

1

PROGRAMMING MANUAL

PROGRAMMABLE CONTROLLER (HCA2)

Foreword ...9

1. Introduction .. 11

1.1 Overview ... 11

1.2 What is a Programmable Controller? .. 11

1.3 What do You Need to Program a PLC? .. 12

1.4 Special considerations for programming equipment .. 12

1.4.1 Current Generation CPU all versions ... 12

2. Basic Program Instructions .. 12

2.1 What is a Program?... 12

2.2 Outline of Basic Devices Used in Programming .. 13

2.3 How to Read Ladder Logic ... 13

2.4 Load, Load Inverse.. 14

2.5 Out ... 15

2.5.1 Timer and Counter Variations ... 15

2.5.2 Double Coil Designation ... 16

2.6 And, And Inverse ... 17

2.7 Or, Inverse ... 18

2.8 Load Pulse, Load Trailing Pulse ... 19

2.9 And Pulse, And Trailing Pulse ... 20

2.10 Or Pulse, Or Trailing Pulse ... 21

2.11 Or Block ... 21

2.12 And Block ... 22

2.13 MPS, MRD and MPP .. 24

2.14 Master Control and Reset ... 25

2.15 Set and Reset .. 28

2.16 Timer, Counter (Out & Reset) ... 29

2.16.1 Basic Timers, Retentive Timers And Counters .. 29

2.16.2 Normal 32 bit Counters ... 30

2.16.3 High Speed Counters.. 30

2.17 Leading and Trailing Pulse.. 30

2.18 Inverse ... 31

2.19 No Operation ... 32

2.20 End... 32

3. STL Programming ... 33

3.1 What is STL, SFC And IEC1131 Part 3? .. 33

2

3.2 How STL Operates .. 34

3.2.1 Each step is a program ... 34

3.3 How To Start And End An STL Program ... 35

3.3.1 Embedded STL programs... 35

3.3.2 Activating new states .. 36

3.3.3 Terminating an STL Program .. 36

3.4 Moving Between STL Steps .. 37

3.4.1 Using SET to drive an STL coil... 37

3.4.2 Using OUT to drive an STL coil .. 38

3.5 Rules and Techniques For STL programs .. 39

3.5.1 Basic Notes On The Behavior Of STL programs 39

3.5.2 Single Signal Step Control .. 41

3.6 Restrictions Of Some Instructions When Used With STL 42

3.7 Using STL To Select The Most Appropriate Program .. 43

3.8 Using STL To Activate Multiple Flows Simultaneously ... 44

3.9 General Rules For Successful STL Branching ... 45

3.10 General Precautions When Using HC-PCS/AT-EE Software 47

3.11 Programming Examples .. 48

3.11.1 A Simple STL Flow .. 48

3.11.2 A Selective Branch/ First State Merge Example Program 50

3.12 Advanced STL Use .. 51

4. Devices in Detail ... 52

4.1 Inputs ... 52

4.2 Outputs .. 52

4.3 Auxiliary Relays ... 53

4.3.1 General Stable State Auxiliary Relays .. 54

4.3.2 Battery Backed/ Latched Auxiliary Relays ... 54

4.3.3 Special Diagnostic Auxiliary Relays ... 55

4.3.4 Special Single Operation Pulse Relays.. 56

4.4 State Relays... 56

4.4.1 General Stable State - State Relays ... 57

4.4.2 Battery Backed/ Latched State Relays ... 57

4.4.3 STL Step Relays ... 57

4.4.4 Annunciator Flags ... 58

4.5 Pointers .. 59

4.6 Interrupt Pointers ... 60

4.6.1 Input Interrupts .. 61

4.6.2 Timer Interrupts ... 61

4.6.3 Disabling Individual Interrupts .. 62

4.6.4 Counter Interrupts ... 62

4.7 Constant K ... 62

4.8 Constant H ... 63

3

4.9 Timers .. 63

4.9.1 General timer operation .. 64

4.9.2 Selectable Timers ... 64

4.9.3 Retentive Timers ... 64

4.9.4 Timers Used in Interrupt and „CALL‟ Subroutines 65

4.9.5 Timer Accuracy.. 65

4.10 Counters .. 66

4.10.1 General/ Latched 16bit UP Counters ... 67

4.10.2 General/ Latched 32bit Bi-directional Counters 67

4.11.1 Basic High Speed Counter Operation .. 69

4.11.2 Availability of High Speed Counters ... 70

4.11.3 1 Phase Counters - User Start and Reset (C235 - C240) 71

4.11.4 1 Phase Counters - Assigned Start and Reset (C241 to C245) 72

4.11.5 2 Phase Bi-directional Counters (C246 to C250)..................................... 73

4.11.6 A/B Phase Counters (C252 to C255) ... 74

4.12 Data Registers ... 75

4.12.1 General Use Registers ... 75

4.12.2 Battery Backed/ Latched Registers .. 77

4.12.3 Special Diagnostic Registers .. 77

4.12.4 File Registers .. 77

4.12.5 Externally Adjusted Registers... 78

4.13 Index Registers ... 78

4.13.1 Modifying a Constant .. 79

4.13.2 Misuse of the Modifiers ... 79

4.13.3 Using Multiple Index Registers ... 80

4.14 Bits, Words, BCD and Hexadecimal ... 80

4.14.1 Bit Devices, Individual and Grouped .. 81

4.14.2 Word Devices .. 82

4.14.3 Interpreting Word Data ... 82

4.14.4 Two‟s Compliment ... 85

4.15 Floating Point And Scientific Notation... 86

4.15.1 Scientific Notation ... 87

4.15.2 Floating Point Format ... 88

4.15.3 Summary Of The Scientific Notation and Floating Point Numbers 89

5. Applied Instructions ... 89

5.1 Program Flow-Functions 00 to 09... 92

5.1.1 CJ (FNC 00) .. 93

5.1.2 CALL (FNC 01) ... 95

5.1.3 SRET (FNC 02) ... 96

5.1.4 IRET, EI, DI (FNC 03, 04, 05) ... 96

5.1.5 WDT (FNC 07) .. 100

5.1.6 FOR, NEXT (FNC 08, 09) ... 101

4

5.2 Move And Compare - Functions 10 to 19 ... 104

5.2.1 CMP (FNC 10) .. 105

5.2.2 ZCP (FNC 11) ... 105

5.2.3 MOV (FNC 12) .. 106

5.2.4 SMOV (FNC 13) .. 106

5.2.5 CML (FNC 14) ... 107

5.2.6 BMOV (FNC 15) .. 108

5.2.7 FMOV (FNC 16) .. 109

5.2.8 XCH (FNC 17) ... 109

5.2.9 BCD (FNC18) ... 110

5.2.10 BIN (FNC 19) ... 111

5.3.1 ADD (FNC 20) .. 114

5.3.2 SUB (FNC 21) .. 115

5.3.3 MUL (FNC 22) .. 115

5.3.4 DIV (FNC 23) ... 116

5.3.5 INC (FNC 24) ... 117

5.3.6 DEC (FNC 24) .. 118

5.3.7 WAND (FNC 26) .. 118

5.3.8 WOR (FNC 27)... 119

5.3.9 WXOR (FNC 28) ... 120

5.3.10 NEG (FNC 29) .. 120

5.4.1 ROR (FNC 30) .. 122

5.4.2 ROL (FNC 31) ... 123

5.4.3 RCR (FNC 32)... 124

5.4.4 RCL (FNC 33) ... 124

5.4.5 SFTR (FNC 34) ... 125

5.4.6 SFTL (FNC 35) .. 126

5.4.7 WSFR (FNC 36) .. 126

5.4.8 WSFL (FNC 37) .. 127

5.4.9 SFWR (FNC 38) .. 128

5.4.10 SFRD (FNC 39) .. 129

5.5.1 ZRST (FNC 40) ... 131

5.5.2 DECO (FNC 41) .. 132

5.5.3 ENCO (FNC 42) .. 133

5.5.4 SUM (FNC 43) .. 134

5.5.5 BON (FNC 44)... 134

5.5.6 MEAN (FNC 45) .. 135

5.5.7 ANS (FNC 46) ... 136

5.5.8 ANR (FNC 47) ... 137

5.5.9 SQR (FNC 48)... 137

5.5.10 FLT (FNC 49) .. 138

5.6.1 REF (FNC 50) ... 141

5

5.6.2 REFF (FNC 51) ... 141

5.6.3 MTR (FNC 52)... 142

5.6.4 HSCS (FNC 53) .. 144

5.6.5 HSCR (FNC 54) .. 145

5.6.6 HSZ (FNC 55) ... 146

5.6.7 SPD (FNC 56) ... 149

5.6.8 PLSY (FNC 57) ... 150

5.6.9 PWM (FNC 58).. 151

5.6.10 PLSR (FNC 59) ... 152

5.7.1 IST (FNC 60) ... 157

5.7.2 SER (FNC 61) ... 159

5.7.3 ABSD (FNC 62) ... 160

5.7.4 INCD (FNC 63).. 161

5.7.5 TTMR (FNC 64) .. 162

5.7.6 STMR (FNC 65) .. 163

5.7.7 ALT (FNC 66) .. 163

5.7.8 RAMP (FNC 67) .. 164

5.7.9 ROTC (FNC 68) .. 166

5.7.10 SORT (FNC 69) .. 168

5.8.1 TKY (FNC 70) ... 171

5.8.2 HKY (FNC 71) ... 172

5.8.3 DSW (FNC 72) .. 174

5.8.4 SEGD (FNC 73) .. 175

5.8.5 SEGL (FNC 74) ... 176

5.8.6 ARWS (FNC 75) .. 178

5.8.7 ASC (FNC 76) ... 179

5.8.8 PR (FNC 77) ... 180

5.8.9 FROM (FNC 78) .. 181

5.8.10 TO (FNC 79) ... 183

5.9.2 RUN (FNC 81)... 187

5.9.3 ASCI (FNC 82) .. 188

5.9.4 HEX (FNC 83) ... 189

5.9.5 CCD (FNC 84)... 190

5.9.6 VRRD (FNC 85) .. 191

5.9.7 VRSD (FNC 86) .. 192

5.9.8 PID (FNC 88) .. 193

5.10.1 ECMP (FNC 110) .. 202

5.10.2 EZCP (FNC 111) ... 202

5.10.3 EBCD (FNC 118) .. 203

5.10.4 EBIN (FNC 119) .. 204

5.10.6 EAUB (FNC 121) .. 205

5.10.7 EMUL (FNC 122) .. 206

6

5.10.8 EDIV (FNC 123) .. 206

5.10.9 ESQR (FNC 127) .. 207

5.10.10 INT (FNC 129) .. 207

5.11.1 SIN (FNC 130)... 210

5.11.2 COS (FNC 131) .. 211

5.11.3 TAN (FNC 132) .. 212

5.12.1 SWAP (FNC 147) .. 214

5.13.1 Cautions when using Positioning Instructions 217

5.13.2 Pulse train settings ... 218

5.13.3 Devices related to positioning .. 219

5.13.4 Servo Wiring Example .. 220

5.13.5 Example Program ... 220

5.13.6 ABS (FNC 155) ... 224

5.13.7 ZRN (FNC 156) ... 225

5.13.8 PLSV(FNC157) ... 227

5.13.9 DRVI (FNC 158) .. 228

5.13.10 DRVA(FNC 159) ... 230

5.14.1 TCMP (FNC 160) .. 234

5.14.2 TZCP (FNC 161) ... 235

5.14.3 TADD (FNC 162) ... 235

5.14.4 TSUB (FNC 163) ... 237

5.14.5 TRD (FNC 166) ... 238

5.14.6 TWR (FNC 167) .. 239

5.14.7 Hour (FNC 169) .. 239

5.15.1 GRY (FNC 170)... 242

5.15.2 GBIN (FNC 171) ... 243

5.15.3 RD3A (FNC 176) ... 243

5.15.4 WR3A (FNC 177) .. 244

5.16.1 EXTR (FNC 180)... 246

5.17.1 LD compare ... 272

5.17.2 AND compare (FNC 232 to 238) .. 273

5.17.3 OR compare (FNC 240 to 246) .. 274

6. Diagnostic Devices ... 275

6.1 Device Lists ... 276

6.2 PLC Status (M8000 to M8009 and D8000 to D8009) .. 289

6.3 Clock Devices (M8010 to M8019 and D8010 to D8019) 292

6.4 Operation Flags (M8020 to M8029 and D8020 to D8029) 292

6.5 PLC Operation Mode (M8030 to M8039 and D8030 to D8039) 295

6.6 Step Ladder (STL) Flags (M8040 to M8049 and D8040 to D8049) 296

6.7 Interrupt Control Flags (M8050 to M8059 and D8050 to D8059) 297

6.8 Error Detection Devices (M8060 to M8069 and D8060 to D6069) 298

6.9 Link and Special Operation Devices (M8070 to M8099 and D8070 to D8099) 299

7

6.10 Miscellaneous Devices.. 300

6.11 Communication Adapter .. 300

6.12 High Speed Zone Compare Table Comparison Flags...................................... 301

6.13 Miscellaneous Devices (M8160 to M8199) .. 303

6.14 Miscellaneous devices (D8158 to D8164) and Index Registers (D8182 to D8199)

 ... 304

6.15 N:N Network Related Flags and Data Registers .. 305

6.16 Up/Down Counter Control (M8200 to M8234 and D8219 to D8234) 306

6.17 High Speed Counter Control (M8235 to M8255 and D8235 to D8255) 306

6.18 Error Code Tables ... 306

7. Execution Times And Instructional Hierarchy .. 312

7.1 Basic Instructions .. 312

7.2 Hierarchical Relationships Of Basic Program Instructions 322

7.3 Batch Processing .. 323

7.4 Summary of Device Memory Allocations .. 324

7.5 Limits Of Instruction Usage ... 325

7.5.1 Instructions Which Can Only Be Used Once In The Main Program Area

 .. 325

7.5.2 Instructions Which Are Not Suitable ... 326

8. PLC Device Tables .. 326

8.1 Performance Specification Of The .. 326

8.2 Performance Specification Of The HCA2 ... 328

8.3 Performance Specification Of The PLC‟s... 330

9. Assigning System Devices .. 332

9.1 Addressing Extension Modules ... 332

9.2 Real Time Clock Function ... 332

9.2.1 Setting the real time clock .. 333

9.3 Analog Expansion Boards ... 334

9.3.1 HCA2-1DA-BD .. 334

9.3.2 TX1N-2AD-BD... 341

10. Points Of Technique ... 347

10.1 Advanced Programming Points .. 347

10.2 Users of DC Powered Units ... 347

10.3 Using The Forced RUN/STOP Flags .. 348

10.3.1 A RUN/STOP push button configuration .. 348

10.3.2 Remote RUN/STOP control.. 349

10.4 Constant Scan Mode ... 349

10.5 Alternating ON/OFF States ... 350

10.6 Using Battery Backed Devices ... 351

10.7 Indexing Through Multiple Display Data Values ... 351

10.8 Reading And Manipulating Thumbwheel Data ... 352

10.9 Measuring a High Speed Pulse Input ... 352

8

10.9.1 A 1 msec timer pulse measurement ... 352

10.9.2 A 0.1 msec timer pulse measurement .. 353

10.10 Using The Execution Complete Flag, M8029... 354

10.11 Creating a User Defined MTR Instruction... 354

10.12 An Example System .. 355

10.13 Using The PWM Instruction For Motor Control .. 361

10.14 Communication Format ... 364

10.14.1 Specification of the communication parameters: 364

10.14.2 Header and Terminator Characters .. 365

10.14.3 Timing diagrams for communications: ... 366

10.14.4 8 bit or 16 bit communications. .. 370

10.15 PID Programming Techniques .. 370

10.15.1 Keeping MV within a set range .. 370

10.15.2 Manual/Automatic change over .. 371

10.15.3 Using the PID alarm signals ... 371

10.15.4 Other tips for PID programming ... 372

10.16 Additional PID functions .. 372

10.17 Pre-tuning operation.. 373

10.17.1 Variable Constants .. 373

10.18 Example Autotuning Program ... 374

10.19.1 Outline of functions. .. 375

10.19.2 Control devices for 5DM ... 376

10.19.3 Display screen protect function .. 377

10.19.4 Specified device monitor... 377

10.19.5 Specified device edit ... 378

10.19.6 Automatic Backlight OFF .. 379

10.19.7 Error display enable / disable ... 380

9

Foreword

• This manual contains text, diagrams and explanations which will guide the reader in the

correct programming and operation of the PLC.

• Before attempting to install or use the PLC this manual should be read and understood.

• If in doubt at any stage of the installation of the PLC always consult a professional

electrical engineer who is qualified and trained to the local and national standards which

apply to the installation site.

• If in doubt about the operation or use of the PLC please consult the nearest

BRASILTEC distributor.

• This manual is subject to change without notice.

Guidelines for the Safety of the User and Protection of the Programmable

Controller (PLC)

This manual provides information for the use of the HC family of PLC‟s. The manual has

been written to be used by trained and competent personnel. The definition of such a

person or persons is as follows;

a) Any engineer who is responsible for the planning, design and construction of automatic

equipment using the product associated with this manual should be of a competent nature,

trained and qualified to the local and national standards required to fulfill that role. These

engineers should be fully aware of all aspects of safety with regards to automated

equipment.

b) Any commissioning or service engineer must be of a competent nature, trained and

qualified to the local and national standards required to fulfill that job. These engineers

should also be trained in the use and maintenance of the completed product. This

includes being completely familiar with all associated documentation for the said product.

All maintenance should be carried out in accordance with established safety practices.

c) All operators of the completed equipment (see Note) should be trained to use this

product in a safe manner in compliance to established safety practices. The operators

should also be familiar with documentation which is associated with the operation of the

completed equipment.

10

Note : the term „completed equipment‟ refers to a third party constructed device which

contains or uses the product associated with this manual.

Notes on the Symbols Used in this Manual

At various times throughout this manual certain symbols will be used to highlight points of

information which are intended to ensure the users personal safety and protect the

integrity of equipment. Whenever any of the following symbols are encountered its

associated note must be read and understood. Each of the symbols used will now be

listed with a brief description of its meaning.

Hardware Warnings

1) Indicates that the identified danger WILL cause physical and property

damage.

2) Indicates that the identified danger could POSSIBLY cause physical and

property damage.

3) Indicates a point of further interest or further explanation.

Software Warnings

4) Indicates special care must be taken when using this element of software.

5) Indicates a special point which the user of the associate software element

should be aware of.

6) Indicates a point of interest or further explanation

• Under no circumstances will BRASILTEC be liable responsible for any

consequential damage that may arise as a result of the installation or use of this

equipment.

• All examples and diagrams shown in this manual are intended only as an aid to

understanding the text, not to guarantee operation. BRASILTEC will accept no

responsibility for actual use of the product based on these illustrative examples.

• Please contact a BRASILTEC distributor for more information concerning applications in

life critical situations or high reliability.

11

1. Introduction

1.1 Overview

1) Scope of this manual

This manual gives details on all aspects of operation and programming for ,HCA2,

programmable controllers (PLCs). For all information relating to the PLC hardware and

installation, refer to the appropriate manual supplied with the unit.

2) How to use this manual

This manual covers all the functions of the highest specification Programmable (Logic)

Controller (PLC). For this reason, the following indicator is included in relevant section

titles to show which PLCs that section applies to;

Shaded boxes indicate the applicable PLC type

-“HCA2”-All HCA2PLCs

If an indicator box is half shaded, as shown to the left, this means that not all the functions

described in the current section apply to that PLC. The text explains in further detail or

makes an independent reference.

If there are no indicator boxes then assume the section applies to all PLC types unless

otherwise stated.

3) HC family

This is a generic term which is often used to describe all Programmable Controllers

without identifying individual types or model names.

4) CPU version numbers and programming support

As BRASILTEC upgrades each model different versions have different capabilities.

- Please refer to section 1.4 for details about peripheral support for each model.

1.2 What is a Programmable Controller?

A Programmable Logic Controller (PLC or programmable controller) is a device that a user

can program to perform a series or sequence of events. These events are triggered by

stimuli (usually called inputs) received at the PLC or through delayed actions such as time

12

delays or counted occurrences. Once an event triggers, it actuates in the outside world by

switching ON or OFF electronic control gear or the physical actuation of devices. A

programmable controller will continually „loop‟ through its internal „user defined‟ program

waiting for inputs and giving outputs at the programmed specific times.

Note on terminology:

The term programmable controller is a generic word used to bring all the elements making

the control system under one descriptive name. Sometimes engineers use the term

‘Programmable Logic Controller‟, „PLC‟ or „programmable controller‟ to describe the

same control system.

The construction of a programmable controller can be broken down into component parts.

The element where the program is loaded, stored and processed is often known as the

Main Processing Unit or MPU. Other terms commonly heard to describe this device are

„base unit‟, ‘controller‟ and „CPU‟. The term CPU is a little misleading as todays more

advanced products may contain local CPU devices. A Main CPU (or more correctly a Main

Processing Unit) controls these local CPUs through a communication network or bus.

1.3 What do You Need to Program a PLC?

A variety of tools are available to program the BRASILTEC HC family of PLCs. Each of

these tools can use and access the instructions and devices listed in this manual for the

identified PLC.

1.4 Special considerations for programming equipment

1.4.1 Current Generation CPU all versions

The introduction of the current CPU provides the HC user with many new devices

and instructions. To use the full features of the current range of HC units the user

must upgrade older software and hardware programming tools.

However, because of the downward compatibility of the current range, it is not necessary

to upgrade existing programming tools up to the equivalent functionality of last generation

CPU ver 3.30 units.

2. Basic Program Instructions

2.1 What is a Program?

A program is a connected series of instructions written in a language that the PLC can

13

understand. There are three forms of program format; instruction, ladder and SFC/STL.

Not all programming tools can work in all programming forms. Generally hand held

programming panels only work with instruction format while most graphic programming

tools will work with both instruction and ladder format. Specialist programming software

will also allow SFC style programming.

2.2 Outline of Basic Devices Used in Programming

There are six basic programming devices. Each device has its own unique use. To enable

quick and easy identification each device is assigned a single reference letter;

- X: This is used to identify all direct, physical inputs to the PLC.

- Y: This is used to identify all direct, physical outputs from the PLC.

- T: This is used to identify a timing device which is contained within the PLC.

- C: This is used to identify a counting device which is contained within the PLC.

- M and S: These are used as internal operation flags within the PLC.

All of the devices mentioned above are known as „bit devices‟. This is a descriptive title

telling the user that these devices only have two states; ON or OFF, 1 or 0.

Detailed device information:

• Chapter 4 contains this information in detail. However, the above is all that is

required for the rest of this chapter.

2.3 How to Read Ladder Logic

Ladder logic is very closely associated to basic relay logic. There are both contacts and

coils that can be loaded and driven in different configurations. However, the basic principle

remains the same.

A coil drives direct outputs of the PLC (ex. a Y device) or drives internal timers, counters

or flags (ex. T, C, M and S devices). Each coil has associated contacts. These contacts

are available in both “normally open” (NO) and “normally closed” (NC) configurations.

The term “normal(ly)” refers to the status of the contacts when the coil is not energized.

Using a relay analogy, when the coil is OFF, a NO contact would have no current flow, that

is, a load being supplied through a NO contact would not operate. However, a NC contact

would allow current to flow, hence the connected load would be active.

Activating the coil reverses the contact status, that is, the current would flow in a NO

14

contact and a NC contact would inhibit the flow.

Physical inputs to the PLC (X devices) have no programmable coil. These devices may

only be used in a contact format (NO and NC types are available).

Example:

Because of the close relay association, ladder logic programs can be read as current

flowing from the left vertical line to the right vertical line. This current must pass through a

series of contact representations such as X0 and X1 in order to switch the output coil Y0

ON. Therefore, in the example shown, switching X0 ON causes the output Y0 to also

switch ON. If however, the limit switch X1 is activates, the output Y0 turns OFF. This is

because the connection between the left and the right vertical lines breaks so there is no

current flow.

2.4 Load, Load Inverse

Mnemonic Function Format Devices Program steps

LD

(LoaD)

Initial logical

operation contact

type NO (normally

open)

X, Y, M, S, T, C 1

LDI

(Load Inverse)

Initial logical

operation contact

type NC (normally

closed)

X, Y, M, S, T, C 1

Program example

15

Basic points to remember:

- Connect the LD and LDI instructions directly to the left hand bus bar.

- Or use LD and LDI instructions to define a new block of program when using the ORB

and ANB instructions (see later sections).

The OUT instruction:

• For details of the OUT instruction (including basic timer and counter variations)

please see over the following page.

2.5 Out

Mnemonic Function Format Devices Program steps

OUT (OUT) Final logical

operation type coil

drive

Y, M, S, T, C Y, M:1

S, special M

coils: 2

T:3

C (16 bit): 3

C (32 bit): 5

Basic points to remember:

- Connect the OUT instruction directly to the right hand bus bar.

- It is not possible to use the OUT instruction to drive „X‟ type input devices.

- It is possible to connect multiple OUT instructions in parallel (for example see the

previous page; M100/T0 configuration)

2.5.1 Timer and Counter Variations

When configuring the OUT instruction for use as either a timer (T) or counter (C) a

constant must also be entered. The constant is identified by the letter “K” (for example see

previous page; T0 K19).

In the case of a timer, the constant “K” holds the duration data for the timer to operate, i.e.

if a100 msec timer has a constant of “K100” it will be (1005 100 msec) 10 seconds before

the timer coil activates.

16

With counters, the constant identifies how many times the counter must be pulsed or

triggered before the counter coil activates. For example, a counter with a constant of “8”

must be triggered 8 times before the counter coil finally energizes. The following table

identifies some basic parameter data for various timers and counters.

Timer/Counter Setting constant K Actual setting Program steps

1msecTimer 1 to 32,767 0.001 to 32.767 sec 3

10 msec Timer 0.01 to 327.67 sec

100 msec Timer 0.1 to 3276.7 sec

16 bit Counter 1 to 32,767 1 to 32,767

32 bit Counter -2,147,483,648 to

2,147,483,647

-2,147,483,648 to

2,147,483,647

5

2.5.2 Double Coil Designation

Double or dual coiling is not a recommended practice.

Using multiple output coils of the same device can

cause the program operation to become unreliable.

The example program shown opposite identifies a

double coil situation; there are two Y3 outputs. The

following sequence of events will occur when inputs

X1 = ON and X2 = OFF;

1.The first Y3 tuns ON because X1 is ON. The contacts associated with Y3 also energize

when the coil of output Y3 energizes. Hence, output Y4 turns ON.

2.The last and most important line in this program looks at the status of input X2.

If this is NOT ON then the second Y3 coil does NOT activate. Therefore the status of the

Y3 coil updates to reflect this new situation, i.e. it turns OFF. The final outputs are then Y3

= OFF and Y4 = ON.

Use of dual coils:

• Always check programs for incidents of dual coiling. If there are dual coils the

program will not operate as expected - possibly resulting in physical damage.

The last coil effect:

• In a dual coil designation, the coil operation designated last is the effective

coil. That is, it is the status of the previous coil that dictates the behavior at the

current point in the program.

Input durations:

The ON or OFF duration of the PLC inputs must

17

be longer than the operation cycle time of the PLC.

Taking a 10 msec (standard input filter) response delay into account, the ON/OFF duration

must be longer than 20 msec if the operation cycle (scan time) is 10 msec.

Therefore, in this example, input pulses of more than 25Hz (1sec/(20msec ON + 20msec

OFF)) cannot be sensed.

There are applied instructions provided to handle such high speed input requests.

①: Input ON state NOT recognized

②: Input ON state recognized

③: Input OFF state NOT recognized

④: 1 program processing

⑤: Input processing

⑥: Output processing

⑦: A full program scan/operation cycle

2.6 And, And Inverse

Mnemonic Function Format Devices Program steps

AND

(AND)

Serial connection

of NO (normally

open) contacts

X, Y, M, S, T, C 1

ANI

(AND Inverse)

Serial connection

of NC (normally

closed) contacts

X, Y, M, S, T, C 1

Program example:

Basic points to remember:

- Use the AND and ANI instructions for serial connection of contacts. As many contacts as

required can be connected in series (see following point headed “Peripheral limitations”).

- The output processing to a coil, through a contact, after writing the initial OUT instruction

is called a “follow-on” output (for an example see the program above; OUT Y4). Follow on

outputs are permitted repeatedly as long as the output order is correct.

Peripheral limitations:

• The PLC has no limit to the number of contacts connected in series or in

18

parallel.

However, some programming panels, screens and printers will not be able to display or

print the program if it exceeds the limit of the hardware. It is preferable for each line or

rung of ladder program to contain up to a maximum of 10 contacts and 1 coil. Also, keep

the number of follow-on outputs to a maximum of 24.

2.7 Or, Inverse

Mnemonic Function Format Devices Program steps

OR

(OR)

Parallel

connection of NO

(normally open)

contacts

X, Y, M, S, T, C 1

ORI

(OR Inverse)

Parallel

connection of NC

(normally closed)

contacts

X, Y, M, S, T, C 1

Program example:

Basic points to remember:

- Use the OR and ORI instructions for parallel connection of contacts. To connect a block

that contains more than one contact connected in series to another circuit block in parallel,

use an ORB instruction.

- Connect one side of the OR/ORI instruction to the left hand bus bar.

Peripheral limitations:

• The PLC has no limit to the number of contacts connected in series or in

parallel.

However, some programming panels, screens and printers will not be able to display or

print the program if it exceeds the limit of the hardware. It is preferable for each line or

rung of ladder program to contain up to a maximum of 10 contacts and 1 coil. Also keep

19

number of follow-on outputs to a maximum of 24.

2.8 Load Pulse, Load Trailing Pulse

Mnemonic Function Format Devices Program steps

LDP

(LoaD Pulse)

Initial logical

operation –Rising

edge pulse

X, Y, M, S, T, C 2

LDF

(LoaD Falling

pulse)

Initial logical

operation Falling/

trailing edge

pulse

X, Y, M, S, T, C 2

Program example:

Basic points to remember:

- Connect the LDP and LDF instructions directly to the left hand bus bar.

- Or use LDP and LDF instructions to define a new block of program when using the ORB

and ANB instructions (see later sections).

- LDP is active for one program scan after the associated device switches from OFF to

ON.

- LDF is active for one program scan after the associated device switches from ON to

OFF.

Single Operation flags M2800 to M3071:

• The pulse operation instructions, when used with auxiliary relays M2800 to

M3071, only activate the first instruction encountered in the program scan, after

the point in the program where the device changes. Any other pulse operation

instructions will remain inactive.

• This is useful for use in STL programs (see chapter 3) to perform single step operation

20

using a single device.

• Any other instructions (LD, AND, OR, etc.) will operate as expected

2.9 And Pulse, And Trailing Pulse

Mnemonic Function Format Devices Program steps

ANP

(ANd Pulse)

Serial connection

of Rising edge

pulse

X, Y, M, S, T, C 2

ANF

(ANd Falling

pulse)

Serial connection

of Falling /trailing

edge pulse

X, Y, M, S, T, C 2

Program example

Basic points to remember:

- Use the ANDP and ANDF instructions for the serial connection of pulse contacts.

- Usage is the same as for AND and ANI; see earlier.

- ANP is active for one program scan after the associated device switches from OFF to

ON.

- ANF is active for one program scan after the associated device switches from ON to

OFF.

Single operation flags M2800 to M3071:

• When used with flags M2800 to M3071 only the first instruction will activate.

21

2.10 Or Pulse, Or Trailing Pulse

Mnemonic Function Format Devices Program steps

ORP

(OR Pulse)

Parallel

connection of

Rising edge pulse

X, Y, M, S, T, C 2

ORF

(OR Falling pulse)

Parallel

connection of

Falling / trailing

edge pulse

X, Y, M, S, T, C 2

Program example:

Basic points to remember:

- Use the ORP and ORF instructions for the parallel connection of pulse contacts.

- Usage is the same as for OR and ORI; see earlier.

- ORP is active for one program scan after the associated device switches from OFF to

ON.

- ORF is active for one program scan after the associated device switches from ON to

OFF.

Single operation flags M2800 to M3071:

• When used with flags M2800 to M3071 only the first instruction will activate.

2.11 Or Block

Mnemonic Function Format Devices Program steps

22

ORB

(OR Block)

Parallel

connection

of multiple contact

circuits

N/A 1

Program example:

Basic points to remember:

- An ORB instruction is an independent instruction and is not associated with any device

number.

- Use the ORB instruction to connect multi-contact circuits (usually serial circuit blocks) to

the preceding circuit in parallel. Serial circuit blocks are those in which more than one

contact connects in series or the ANB instruction is used.

- To declare the starting point of the circuit block use a LD or LDI instruction. After

completing the serial circuit block, connect it to the preceding block in parallel using the

ORB instruction.

Batch processing limitations:

• When using ORB instructions in a batch, use no more than 8 LD and LDI

instructions in the definition of the program blocks (to be connected in parallel).

Ignoring this will result in a program error (see the right most program listing).

Sequential processing limitations:

• There are no limitations to the number of parallel circuits when using an ORB

instruction in the sequential processing configuration (see the left most program

listing)

2.12 And Block

Mnemonic Function Format Devices Program steps

ANB

(ANd Block)

Serial connection

of multiple

parallel circuits

N/A 1

23

Program example:

Basic points to remember:

- An ANB instruction is an independent instruction and is not associated with any device

number

- Use the ANB instruction to connect multi-contact circuits (usually parallel circuit blocks)

to the preceding circuit in series. Parallel circuit blocks are those in which more than one

contact connects in parallel or the ORB instruction is used.

- To declare the starting point of the circuit block, use a LD or LDI instruction. After

completing the parallel circuit block, connect it to the preceding block in series using the

ANB instruction.

Batch processing limitations:

• When using ANB instructions in a batch, use no more than 8 LD and LDI

instructions in the definition of the program blocks (to be connected in parallel).

Ignoring this will result in a program error (see ORB explanation for example).

Sequential processing limitations:

• It is possible to use as many ANB instructions as necessary to connect a

number of parallel circuit blocks to the preceding block in series (see the

program listing)

24

2.13 MPS, MRD and MPP

Mnemonic Function Format Devices Program steps

MPS(Point Store) Stores the

current result of

the internal PLC

operations

N/A 1

MRD(Read) Reads the

current result of

the internal PLC

operations

N/A 1

MPP(PoP) Pops (recalls and

removes) the

currently stored

result

N/A 1

Basic points to remember:

- Use these instructions to connect output coils to the left hand side of a contact.

Without these instructions connections can only be made to the right hand side of the last

contact.

- MPS stores the connection point of the ladder circuit so that further coil branches can

recall the value later.

- MRD recalls or reads the previously stored connection point data and forces the next

contact to connect to it.

- MPP pops (recalls and removes) the stored connection point. First, it connects the next

contact, then it removes the point from the temporary storage area.

- For every MPS instruction there MUST be a corresponding MPP instruction.

- The last contact or coil circuit must connect to an MPP instruction.

- At any programming step, the number of active MPS-MPP pairs must be no greater than

11.

MPS, MRD and MPP usage:

• When writing a program in ladder format, programming tools automatically

add all MPS, MRD and MPP instructions at the program conversion stage. If

the generated instruction program is viewed, the MPS, MRD and MPP

instructions are present.

25

• When writing a program in instruction format, it is entirely down to the user to enter all

relevant MPS, MRD and MPP instructions as required.

Multiple program examples:

2.14 Master Control and Reset

Mnemonic Function Format Devices Program steps

MC

(Master Control)

Denotes the start

of a master

control

block

Y, M (n o s p e c

i a l

M coils allowed)

N denotes the

nest level (N0 to

N7)

3

26

MCR

(Master Control

Reset)

Denotes the end

of

a master control

block

N denotes the

nest level (N0 to

N7) to be reset

2

Program example:

Basic points to remember:

- After the execution of an MC instruction, the bus line (LD, LDI point) shifts to a point after

the MC instruction. An MCR instruction returns this to the original bus line.

- The MC instruction also includes a nest level pointer N. Nest levels are from the range

N0 to N7 (8 points). The top nest level is „0‟ and the deepest is „7‟.

- The MCR instruction resets each nest level. When a nest level is reset, it also resets ALL

deeper nest levels. For example, MCR N5 resets nest levels 5 to 7.

- When input X0=ON, all instructions between the MC and the MCR instruction execute.

- When input X0=OFF, none of the instruction between the MC and MCR instruction

execute; this resets all devices except for retentive timers, counters and devices driven by

SET/RST instructions.

- The MC instruction can be used as many times as necessary, by changing the device

number Y and M. Using the same device number twice is processed as a double coil

(see section 2.5.2). Nest levels can be duplicated but when the nest level resets, ALL

occurrences of that level reset and not just the one specified in the local MC.

27

Nested MC program example:

Level N0: Bus line (B) active when X0 is ON

Level N1: Bus line (C) active when both X0 and

X2 are ON

Level N2: Bus line (D) active when X0,X2 and

X4 are ON.

Level N1: MCRN2 executes and restores

bus line (C). If the MCR had reset N0 then

the original bus bar (A) would now be active

as all master controls below nest level 0

would reset.

Level N0: MCRN1 executes and restores

bus line (B)

Initial state: MCR N0 executes and restores

the initial bus line (A).

Output Y5 turns ON/OFF according to the ON/OFF state of X10, regardless of the

ON/OFFstatusofinputsX0,X2or X4.

28

2.15 Set and Reset

Mnemonic Function Format Devices Program steps

SET

(SET)

Sets a bit device

permanently ON

Y, M, S Y,M:1

S, special M

coils:2

D, special D

registers, V and

Z:3

RST

(ReSeT)

Resets a bit

device

permanently

OFF

Y, M, S, D, V,

Z(see section

2.16 for timers

and counters

T,C)

Program example:

Basic points to remember:

- Turning ON X0 causes Y0 to turn ON. Y0 remains ON

even after X0 turns OFF.

- Turning ON X1 causes Y0 to turn OFF. Y0 remains OFF

even after X1 turns OFF.

- SET and RST instructions can be used for the same

device as many times as necessary.

However, the last instruction activated determines the current status.

- It is also possible to use the RST instruction to reset the contents of data devices such as

data registers, index registers etc. The effect is similar to moving „K0‟ into the data device.

29

2.16 Timer, Counter (Out & Reset)

Mnemonic Function Format Devices Program steps

OUT

(OUT)

Driving timer or

counter coils

T, C 32 bit

counters:5

Others: 3

T, C:2

RST

(ReSeT)

Resets timer and

counter, coils

contacts and

current values

T, C (see section

2.15 for other

resettable

devices)

2.16.1 Basic Timers, Retentive Timers And Counters

These devices can all be reset at any time by

driving the RST instruction (with the number Of

the device to be reset). On resetting, all active

contacts, coils and current value registers are

reset for the selected device. In the example,

T246, a 1msec retentive timer, is activate while

X1 is

ON. When the current value of T246 reaches

the preset „K‟ value, i.e. 1234, the timer coil for

T246 will be activated. This drives the NO

contact ON. Hence, Y0 is switched ON.

Turning ON X0 will reset timer T246 in the

manner described previously. Because the

T246 contacts are reset, the output Y0 will be

turned OFF.

Retentive timers:

• For more information on retentive timers.

30

2.16.2 Normal 32 bit Counters

The 32 bit counter C200 counts (up-count, down-count) according to the ON/OFF state of

M8200. In the example program shown on the previous page C200 is being used to count

the number of OFF ~ ON cycles of input X4.

The output contact is set or reset depending on the direction of the count, upon reaching a

value equal (in this example) to the contents of data registers D1,D0 (32 bit setting data is

required for a 32 bit counter).

The output contact is reset and the current value of the counter is reset to „0‟ when input

X3 is turned ON.

32 bit counters:

• For more information on 32 bit counters.

2.16.3 High Speed Counters

High speed counters have selectable count directions. The

directions are selected by driving the appropriate special

auxiliary M coil. The example shown to the right works in the

following manner; when X10 is ON, counting down takes

place. When X10 is OFF counting up takes place.

In the example the output contacts of counter C∆∆∆and its associated current count

values are reset to “0” when X11 is turned ON. When X12 is turned ON the driven counter

is enabled. This means it will be able to start counting its assigned input signal (this will

not be X12 - high speed counters are assigned special input signals.)

Availability of devices:

• Not all devices identified here are available on all programmable controllers.

Ranges of active devices may vary from PLC to PLC. Please check the specific

availability of these devices on the selected PLC before use. For PLC device ranges

please see chapter 8.

2.17 Leading and Trailing Pulse

Mnemonic Function Format Devices Program steps

PLS

(PuLSe)

Rising edge

pulse

Y, M

(no special M

coils allowed)

2

31

PLF

(PuLse Falling)

Falling / trailing

edge pulse

Y, M

(no special M

coils allowed)

2

Program example:

Basic points to remember:

- When a PLS instruction is executed,

object devices Y and M operate for one

operation cycle after the drive input signal

has turned ON.

- When a PLF instruction is executed,

object devices Y and M operate for one

operation cycle after the drive input signal

has turned OFF.

- When the PLC status is changed from

RUN to STOP and back to RUN with the input signals still ON, PLS M0 is operated again.

However, if an M coil which is battery backed (latched) was used instead of M0 it would

not re-activate. For the battery backed device to be re-pulsed, its driving input (ex. X0)

must be switched OFF during the RUN/STOP/RUN sequence before it will be pulsed once

more.

2.18 Inverse

Mnemonic Function Format Devices Program steps

INV

(Inverse)

Invert the current

result of the

internal PLC

operations

N/A 1

Program example:

32

Basic points to remember:

- The INV instruction is used to change (invert) the logical state of the current ladder

network at the inserted position.

- Usage is the same as for AND and ANI; see earlier.

Usages for INV

• Use the invert instruction to quickly change the logic of a complex circuit.

It is also useful as an inverse operation for the pulse contact instructions LDP, LDF,

ANP, etc.

2.19 No Operation

Mnemonic Function Format Devices Program steps

NOP

(No Operation)

No operation or

null step

N/A N/A 1

Basic points to remember:

- Writing NOP instructions in the middle of a program minimizes step number changes

when changing or editing a program.

- It is possible to change the operation of a circuit by replacing programmed instructions

with NOP instructions.

- Changing a LD, LDI, ANB or an ORB instruction with a NOP instruction will change the

circuit considerably; quite possibly resulting in an error being generated.

- After the program „all clear operation‟ is executed, all of the instructions currently in the

program are over written with NOPs.

2.20 End

Mnemonic Function Format Devices Program steps

END

(END)

Forces the current

program scan to

end

N/A 1

Basic points to remember:

33

- Placing an END instruction in a program forces that program to end the current scan and

carry out the updating processes for both inputs and outputs.

- Inserting END instructions in the middle of the program helps program debugging as the

section after the END instruction is disabled and isolated from the area that is being

checked. Remember to delete the END instructions from the blocks which have already

been checked.

- When the END instruction is processed the PLCs watchdog timer is automatically

refreshed.

A program scan:

• A program scan is a single processing of the loaded program from start to finish,

This includes updating all inputs, outputs and watchdog timers. The time period for

one such process to occur is called the scan time. This will be dependent upon program

length and complexity. Immediately the current scan is completed the next scan

begins. The whole process is a continuous cycle. Updating of inputs takes place at the

beginning of each scan while all outputs are updated at the end of the scan.

3. STL Programming

This chapter differs from the rest of the contents in this manual as it has been written with

a training aspect in mind. STL/SFC programming, although having been available for

many years, is still misunderstood and misrepresented. We at BRASILTEC would like to

take this opportunity to try to correct this oversight as we see STL/SFC programming

becoming as important as ladder style programming.

3.1 What is STL, SFC And IEC1131 Part 3?

The following explanation is very brief but is designed to quickly outline the differences

and similarities between STL, SFC and IEC1131 part 3. In recent years Sequential

Function Chart (or SFC) style programming (including other similar styles such as Grafcet

and Funktionplan) have become very popular throughout Europe and have prompted the

creation of IEC1131 part 3.

The IEC1131 SFC standard has been designed to become an interchangeable

programming language. The idea being that a program written to IEC1131 SFC standards

on one manufacturers PLC can be easily transferred (converted) for use on a second

manufacturers PLC.

STL programming is one of the basic programming instructions included in all HC PLC

family members. The abbreviation STL actually means STep Ladder programming.

STL programming is a very simple concept to understand yet can provide the user with

one of the most powerful programming techniques possible. The key to STL lies in its

ability to allow the programmer to create an operational program which „flows‟ and works

34

in almost exactly the same manner as SFC. This is not a coincidence as this programming

technique has been developed deliberately to achieve an easy to program and monitor

system. One of the key differences to BRASILTEC‟s STL programming system is that it

can be entered into a PLC in 3 formats. These are:

Ι) Instruction - a word/mnemonic entry system

ΙΙ) Ladder - a graphical program construction method using a relay logic symbols

ΙΙΙ) SFC - a flow chart style of STL program entry (similar to SFC)

General note:

• IEC1131-3: 03.1993 Programmable controllers; part 3: programming

languages.

The above standard is technically identical to the „Euro-Norm‟ EN61131-3: 07.1993

3.2 How STL Operates

As previously mentioned, STL is a system which allows

the user to write a program which functions

in much the same way as a flow chart, this can be seen

in the diagram opposite. STL derives its strength by

organizing a larger program into smaller more

manageable parts.

Each of these parts can be referred to as either a state or

a step. To help identify the states, each is given a unique

identification number. These numbers are taken from the

state relay devices.

3.2.1 Each step is a program

Each state is completely isolated from all other states within the whole program. A good

way to envisage this, is that each state is a separate program and the user puts each of

those programs together in the order that they require to perform their task. Immediately

this means that states can be reused many times and in different orders. This saves on

programming time AND cuts down on the number of programming errors encountered.

A Look Inside an STL

On initial inspection the STL program looks as if it is a

rather basic flow diagram. But to find out what is really

happening the STL state needs to be put „under a

microscope‟ so to speak. When a single state is

35

examined in more detail, the sub-program can be viewed.

With the exception of the STL instruction, it will be immediately seen that the STL

sub-program looks just like ordinary programming.

①The STL instruction is shown as a „fat‟ normally open contact.

All programming after an STL instruction is only active when the associated state coil is

active.

②The transition condition is also written using standard programming. This idea

re-enforces the concept that STL is really a method of sequencing a series of events or as

mentioned earlier „of joining lots of smaller programs together‟.

Combined SFC Ladder representation

Sometimes STL programs will be written in hard copy as a combination of both flow

diagram and internal sub-program. (example shown below). Identification of contact

states.

Please note the following convention is used:

○Normally Open contact

 ●Normally Closed contact

Common alternatives are „a‟ and „b‟ identifiers for

Normally Open, Normally Closed states or often a

line drawn over the top of the Normally Close d

contact name is used, e.g. X000.

3.3 How To Start And End An STL Program

Before any complex programming can be undertaken the basics of how to start and more

importantly how to finish an STL program need to be examined.

3.3.1 Embedded STL programs

An STL style program does not have to entirely

replace a standard ladder logic program. In fact it

might be very difficult to do

so. Instead small or even large section of STL

program can be entered at any point in a program.

Once the STL task has been completed the program must go back to processing standard

36

program instructions until the next STL program block. Therefore, identifying the start and

end of an STL program is very important.

3.3.2 Activating new states

Once an STL step has been selected,

how is it used and how is the program

„driven‟?

This is not so difficult, if it is considered

that for an STL step to be active its

associated state coil must be ON. Hence,

to start an STL sequence all that has to

be done is to drive the relevant state ON.

There are many different methods to drive a state, for example the initial state coils could

be pulsed, SET or just included in an OUT instruction. However, within BRASILTEC‟s STL

programming language an STL coil which is SET has a different meaning than one that is

included in an OUT instruction.

Note: For normal STL operation it is recommended that the states are selected

using the SET instruction. To activate an STL step its state coil is SET ON.

Initial Steps

For an STL program which is to be activated on

the initial power up of the PLC, a trigger similar

to that shown opposite could be used, i.e. using

M8002 to drive the setting of the initial state. The

STL step started in this manner is often referred

to as the initial step. Similarly, the step activated

first for any STL sequence is also called the

initial step.

3.3.3 Terminating an STL Program

Once an STL program has been started the programmable controllers CPU will process

all following instructions as being part of that STL program. This means that when a

second pro-gram scan is started the normal instructions at the beginning of the program

are considered to be within the STL program. This is obviously incorrect and the CPU will

proceed to identify a programming error and disable the programmable controllers

operation.

This scenario may seem a little strange but it does make sense when it is considered that

37

the STL program must return control to the ladder program after STL operation is

complete. This means the last step in an STL program needs to be identified in some way.

Returning to Standard Ladder

This is achieved by placing a RET or RETurn

instruction as the last instruction in the last

STL step of an STL program block. This

instruction then returns programming control to

the ladder sequence.

Note: The RET instruction can be used to separate STL programs into sections,

with stan-dard ladder between each STL program. For display of STL in SFC

style format the RET instruction is used to indicate the end of a complete STL

program.

3.4 Moving Between STL Steps

To activate an STL step the user must first drive the state coil. Setting the coil has already

been identified as a way to start an STL program, i.e. drive an initial state. It was also

noted that using an OUT statement to driving a state coil has a different meaning to the

SET instruction. These difference will now be explained:

3.4.1 Using SET to drive an STL coil

• SET is used to drive an STL state coil to

make the step active. Once the current

STL step activates a second following step,

the source STL coil is reset. Hence,

although SET is used to activate a state

the resetting is automatic.

However, if an STL state is driven by a

series of standard ladder logic instructions,

i.e. not a preceding STL state, then

standard programming rules apply. In the example shown opposite S20 is not reset even

after S30 or S21 have been driven. In addition, if S20 is turned OFF, S30 will also stop

operating. This is because S20 has not been used as an STL state. The first instruction

involving the status of S20 is a standard LoaD instruction and NOT an STL instruction.

38

Note: If a user wishes to

forcibly reset an

STL step, using the RST or

ZRST (FNC 40) instructions would

perform this task.

• SET is used to drive an immediately following STL step which typically will have a larger

STL state number than the current step.

• SET is used to drive STL states which occur within the enclosed STL program flow, i.e.

SET is not used to activate a state which appears in an unconnected, second STL flow

diagram.

3.4.2 Using OUT to drive an STL coil

This has the same operational features as using SET. However, there is one major

function which SET is not used. This is to make what is termed „distant jumps‟.

OUT is used for loops and jumps

If a user wishes to „jump‟ back up a program, i.e.

go back to a state which has already been

processed, the OUT instruction would be used

with the appropriate STL state number.

Alternatively the user may wish to make a large

„jump‟ forwards skipping a whole section of STL

programmed states.

Out is used for distant jumps

If a step in one STL program flow was required to

trigger a step in a second, separate STL program

flow the OUT instruction would be used.

Note: Although it is possible to use SET for jumps and loops use of OUT is

needed for display of STL in SFC like structured format.

39

3.5 Rules and Techniques For STL programs

It can be seen that there are a lot of advantages to using STL style programming but there

are a few points a user must be aware of when writing the STL sub-programs. These are

highlighted in this section.

3.5.1 Basic Notes On The Behavior Of STL programs

• When an STL state becomes active its program is processed until the next step is

triggered. The contents of the program can contain all of the programming items and

features of a standard ladder program, i.e. LoaD, AND OR, OUT, ReSeT etc., as well as

applied instructions.

• When writing the sub-program of an STL state, the first vertical „bus bar‟ after the STL

instruction can be considered in a similar

manner as the left hand bus bar of a standard

ladder program.

Each STL step makes its own bus bar. This

means that a user, cannot use an MPS

instruction directly after the STL instruction

(see �), i.e. There needs to be at least a

single contact before the MPS instruction.

Note: Using out coils and even applied instructions immediately after an STL

instruction is permitted

• In normal programming using dual coils is not an acceptable

technique. However repetition of a coil in separate STL

program blocks is allowed.

This is because the user can take advantage of the STL‟s

unique feature of isolating all STL steps except the active STL

steps.

This means in practice that there will be no conflict between

dual coils. The example opposite shows M111 used twice in a

single STL flow.

Caution: The same coil should NOT be programmed in

steps that will be active at the same time as this will result in the same problem as other

dual coils.

40

• When an STL step transfers control to the next

STL step there is a period (one scan) while both steps are

active. This can cause problems with dual coils;

particularly timers.

If timers are dual coiled care must be taken to ensure that

the timer operation is completed during the active STL step.

If the same timer is used in consecutive steps then it is

possible that the timer coil is never deactivated and the

contacts of the timer will not be reset leading to incorrect timer operation. The example

opposite identifies an unacceptable use of timer T001. When control passes from S30 to

S31 T001 is not reset because its coil is still ON in the new step.

Note: As a step towards ensuring the correct operation of the dual timers they

should not be used in consecutive STL steps. Following this simple rule will ensure each

timer will be reset correctly before its next operation.

• As already mentioned, during the transfer

between steps, the current and the selected steps will

be simultaneously active for one program scan. This

could be thought of as a hand over or handshaking

period.

This means that if a user has two outputs contained in

consecutive steps which must NOT be active

simultaneously they must be interlocked. A good

example of this would be the drive signals to select a motors rotation direction. In the

example Y11 and Y10 are shown interlocked with each other.

41

3.5.2 Single Signal Step Control

Transferring between active STL steps can be controlled by a single signal. There are two

methods the user can program to achieve this result.

Method 1 - Using locking devices

In this example it is necessary to program separate locking devices, and the controlling

signal must only pulse ON. This is to prevent the STL programs from running through. The

example shown below identifies the general

program required for this method.

-S30 is activated when M0 is first pulsed ON.

- The operation of M1 prevents the sequence from

continuing because although M0 is ON, the

transfer requirements, need M0 to be ON and M1

to be OFF.

- After one scan the pulsed M0 and the „lock‟

device M1 are reset.

- On the next pulse of M0 the STL step will transfer

program control from S31 to the next step in a

similar manner. This time using M2 as the „lock‟ device because dual coils in successive

steps is not allowed.

- The reason for the use of the „lock‟ devices M1 and M2 is because of the handshaking

period when both states involved in the transfer of program control are ON for 1 program

scan. Without the „locks‟ it would be possible to immediately skip through all of the STL

states in one go!

Method 2 - Special Single Pulse Flags

Using the pulse contacts (LDP, LDF, ANP, etc.) and a special range of M devices (M2800

to M3071) the same result as method 1 can be achieved. The special feature of these

devices prevents run through of the states,

as only the first occurrence of the LDP

instruction will activate.

The example program below shows the

necessary instructions.

- Assume S50 is already active.

- When X01 activates M2800, this in turn

activates the LDP M2800 instruction in S50

and the flow moves on to step S51.

- The LDP M2800 instruction in the transition

part of S51 does not execute because this is

the second occurrence of M2800 in a pulse contact.

- When X01 next activates M2800, the LDP instruction in S51 is the first occurrence

42

because S50 is now inactive. Thus, control passes to the next step in the same manner.

3.6 Restrictions Of Some Instructions When Used With STL

Although STL can operate with most basic and applied instructions there are a few

exceptions. As a general rule STL and MC-MCR programming formats should not be

combined. Other instruction restrictions are listed in the table below.

Restrictions on using applied instructions

• Most applied instructions can be used within STL programs. Attention must be paid

to the way STL isolates each non-active step. It is recommended that when applied

instructions are used their operation is completed before the active STL step transfers to

the next step.

Other restrictions are as follows:

- FOR - NEXT structures can not contain STL program blocks.

- Subroutines and interrupts can not contain STL program blocks.

- STL program blocks can not be written after an FEND instruction.

- FOR - NEXT instructions are allowed within an STL program with a nesting of up to 4

levels.

Using ‘jump’ operations with STL

• Although it is possible to use the program jump operations (CJ instruction) within STL

program flows, this causes additional and often unnecessary program flow complications.

To ensure easy maintenance and quick error finding it is recommended that users do not

write jump instructions into their STL programs.

43

3.7 Using STL To Select The Most Appropriate Program

So far STL has been considered as a simple flow charting programming language. One of

STL‟s exceptional features is the ability to create programs which can have several

operating modes. For example certain machines require a selection of „manual‟ and

„automatic‟ modes, other machines may need the ability to select the operation or

manufacturing processes required to produce products „A‟, „B‟, „C‟, or „D‟. STL achieves

this by allowing multiple program branches to originate from one STL state. Each branch

is then programmed as an individual operating mode, and because each operating mode

should act individually, i.e. there should be no other modes active; the selection of the

program branch must be mutually exclusive. This type of program construction is called

“Selective Branch Programming”. An example instruction program can be seen below,

(this is the sub-program for STL state S20 only) notice how each branch is SET by a

different contact.

A programming construction to split the program flow between different branches is very

useful but it would be more useful if it could be used with a method to rejoin a set of

individual branches.

This type of STL program construction is called a “First State Merge” simply because the

first state (in the example S29, S39 or S49) to complete its operation will cause the

merging state (S50) to be activated. It should be noticed how each of the final STL states

on the different program branches call the same “joining” STL state.

44

3.8 Using STL To Activate Multiple Flows Simultaneously

In the previous branching technique, it was seen how a single flow could be selected from

a group. The following methods describe how a group of individual flows can be activated

simultaneously. Applications could include vending machines which have to perform

several tasks at once, e.g. boiling water, adding different taste ingredients (coffee, tea,

milk, sugar) etc.

In the example below when state S20 is active and X0 is then switched ON, states S21,

S31 and S41 are ALL SET ON as the next states. Hence, three separate, individual,

branch flows are „set in motion‟ from a single branch point. This programming technique is

often called a ‘Parallel Branch‟. To aid a quick visual distinction, parallel branches are

marked with horizontal, parallel lines.

When a group of branch flows are activated, the user will often either;

a) „Race‟ each flow against its counter parts. The flow which completes fastest would then

activate a joining function (“First State Merge” described in the previous section) OR

b) The STL flow will not continue until ALL branch flows have completed there tasks. This

is called a „Multiple State Merge”. An explanation of Multiple State Merge now follows

below. In the example below, states S29, S39 and S49 must all be active. If the instruction

list is viewed it can be seen that each of the states has its own operating/processing

instructions but that also additional STL instructions have been linked together (in a

similar concept as the basic AND instruction). Before state S50 can be activated the

trigger conditions must also be active, in this example these are X10, X11 and X12. Once

all states and input conditions are made the merging or joining state can be SET ON. As is

the general case, all of the states used in the setting procedure are reset automatically.

45

Because more than one state is being simultaneously joined with further states (some

times described as a parallel merge), a set of horizontal parallel lines are used to aid a

quick visual recognition.

3.9 General Rules For Successful STL Branching

For each branch point 8 further branches may be programmed. There are no limits to the

number of states contained in a single STL flow. Hence, the possibility exists for a single

initial state to branch to 8 branch flows which in turn could each branch to a further 8

branch flows etc. If the programmable controllers program is read/written using instruction

or ladder formats the above rules are acceptable. However, users of the HC-PCS/AT-EE

programming package who are utilizing the STL programming feature are constrained by

further restrictions to enable automatic STL program conversions . When using branches,

different types of branching /merging cannot be mixed at the same branch point. The item

marked with a „S‟ are transfer condition which are not permitted.

The following branch configurations/modifications are recommended:

46

47

3.10 General Precautions When Using HC-PCS/AT-EE Software

This software has the ability to program in SFC flow diagrams. As part of this ability it can

read and convert existing STL programs back into SFC flows even if they were never

originally programmed using the HC-PCS/AT-EE software. As an aid to allowing this

automatic SFC flow generation the following rules and points should be noted:

1) When an STL flow is started it should be initialized with one of the state devices from

the range S0 to S9.

2) Branch selection or merging should always be written sequentially moving from left to

right.. The merge states were programmed in a similar manner, S29 proceeded S39 which

proceeded S49.

3) The total number of branches which can be programmed with the STL programming

mode are limited to a maximum of 16 circuits for an STL flow. Each branch point is limited

to a maximum of 8 branching flows. This means two branch points both of 8 branch flows

would equal the restriction. These restrictions are to ensure that the user can always view

the STL flow diagram on the computer running the HC-PCS-AT/ EE software and that

when it is needed, the STL program flow can be printed out clearly.

48

3.11 Programming Examples

3.11.1 A Simple STL Flow

This simple example is an excerpt from a semi-automatic loading-unloading ore truck

program.

This example program has a built in, initialization routine which occurs only when the PLC

is powered from OFF to ON. This is achieved by using the special auxiliary relay M8002.

This activates a Zone ReSeT (ZRST is applied

instruction 40) instruction which ensures all of the

operational STL states within the program are

reset. The program example opposite shows an

M8002/ZRST example.

The push button X0 acts as a start button and a mode selection button. The STL state S0

is initialized with the ZRST instruction. The system waits until inputs X0 and X2 are given

and Y 13 is not active. In the scenario this means the ore truck is positioned at the ore

discharge point, i.e. above the position sensor X2. The ore truck is not currently

discharging its load, i.e. the signal to open the trucks unloading doors (Y13) is not active

and the start button (X0) has been given. Once all of the points have been met the

program steps on to state S21.

On this state the ore cart is moved (Y10) and positioned (X1) at the loading hopper. If the

start button (X0) is pressed during this stage the ore cart will be set into a repeat mode

(M2 is reset) where the ore truck is immediately returned to the loading hopper after

discharging its current load. This repeat mode must be selected on every return to the

loading station.

Once at the loading point the program steps onto state S22. This state opens the hoppers

49

doors (Y11) and fills the truck with ore. After a timed duration, state S23 is activated and

the truck returns (Y12) to the discharge point (X2).

Once at the discharge point the truck opens its bottom doors (Y13). After a timed duration

in which the truck empties its contents, the program checks to see if the repeat mode was

selected on the last cycle, i.e. M2 is reset. If M2 was reset (in state S21) the program

„jumps‟ to step S21 and the ore truck is returned for immediate refilling. If M2 is not reset,

i.e. it is active, the program cycles back to STL state S0 where the ore truck will wait until

the start push button is given.

This is a simple program and is by no means complete but it identifies the way a series of

tasks have been mapped to an STL flow.

50

3.11.2 A Selective Branch/ First State Merge Example Program

The following example depicts an automatic sorting robot. The robot sorts two sizes of ball

bearings from a mixed „source pool‟ into individual storage buckets containing only one

type of ball bearing.

The sequence of physical events (from initial power On) are:

1) The pickup arm is moved to its zero-point when the start button (X12) is pressed. When

the pickup arm reaches the zero-point the zero-point lamp (Y7) is lit.

2) The pickup arm is lowered (Y0) until a ball is collected (Y1). If the lower limit switch (X2)

is made a small ball bearing has been collected; consequently no lower limit switch signal

means a large ball bearing has been collected. Note, a proximity switch (X0) within the

‘source pool‟ identifies the availability of ball bearings.

3) Depending on the collected ball, the pickup arm retracts (output Y2 is operated until X3

is received) and moves to the right (Y3) where it will stop at the limit switch (X4 or X5)

indicating the container required for storage.

4) The program continues by lowering the pickup arm (Y0) until the lower limit switch (X2)

is reached.

5) The collected ball being is released (Y1 is reset).

6) The pickup arm is retracted (Y2) once more.

7) The pickup arm is traversed back (Y4) to the zero-point (X1).

Points to note

• The Selective Branch is used to choose the delivery program for either small ball

bearings or large ball bearings. Once the destination has been reached (i.e. step S24 or

S27 has been executed) the two independent program flows are rejoined at step S30.

• The example program shown works on a single cycle, i.e. every time a ball is to be

retrieved the start button (X12) must be pressed to initiate the cycle.

51

Full STL flow diagram/program

3.12 Advanced STL Use

STL programming can be enhanced by using the Initial State Applied Instruction. This

instruction has a mnemonic abbreviation of IST and a special function number of 60.

When the IST instruction is used an automatic assignment of state relays, special auxiliary

relays (M coils) is made. The IST instruction provides the user with a pre-formatted way of

creating a multi-mode program. The modes available are:

52

a) Automatic:

- Single step

- Single cycle

- Continuous

b) Manual:

- Operator controlled

- Zero return

4. Devices in Detail

4.1 Inputs

Device Mnemonic:X

Purpose: Representation of physical inputs to the programmable controller (PLC)

Alias: I/P

Inp

(X) Input

Input contact

Available forms: NO (�) and NC (�) contacts only (see example device usage for

references)

Devices numbered in: Octal, i.e. X0 to X7, X10 to X17

Further uses: None

Example device usage:

Available devices:

• Alternatively refer to the relevant tables for the selected PLC in chapter 8.

Configuration details:

• Please see chapter 9

4.2 Outputs

Device Mnemonic: Y

Purpose: Representation of physical outputs from the programmable controller

Alias: O/P

53

Otp

Out (Y)

Output (Y)

Output (coil/ relay/ contact)

Available forms: NO (�) and NC contacts and output coils (�)

(see example device usage for references)

Devices numbered in: Octal, i.e. Y0 to Y7, Y10 to Y17

Further uses: None

Example device usage

Available devices:

• Please note, these are all the absolute maximums which are available. The values are

subject to variations caused by unit selection. For configuration details please see chapter

9.

• For more information about the device availability for individual PLCs, please see

chapter 8

4.3 Auxiliary Relays

Device Mnemonic: M

Purpose: Internal programmable controller status flag

Alias: Auxiliary (coil/ relay/ contact/ flag)

M (coil/ relay/ contact /flag)

M (bit) device

Available forms: NO (�) and NC contacts and output coils (�)

(see example device usage for references)

54

Devices numbered in: Decimal, i.e. M0 to M9, M10 to M19

Example device usage:

4.3.1 General Stable State Auxiliary Relays

• A number of auxiliary relays are used in the PLC. The coils of these relays are driven by

device contacts in the PLC in the same manner that the output relays are driven in the

program.

All auxiliary relays have a number of electronic NO and NC contacts which can be used by

the PLC as required. Note that these contacts cannot directly drive an external load. Only

output relays can be used to do this。

Available devices:

• For more information about device availability for individual PLCs, please see chapter 8.

4.3.2 Battery Backed/ Latched Auxiliary Relays

There are a number of battery backed or latched relays whose status is retained in battery

backed or EEPROM memory. If a power failure should occur all output and general

purpose relays are switched off. When operation is resumed the previous status of these

relays is restored.

The circuit shown is an example of a self retaining circuit. Relay M507 is activated when

X0 is turned ON. If X0 is turned OFF after the activation of M507, the ON status of M507 is

self retained, i.e. the NO contact M507 drives the coil M507.

However, M507 is reset (turned OFF) when the input X1 is turned ON, i.e. the NC contact

55

is broken.

A SET and RST (reset) instruction can be used to retain the status of a relay being

activated momentarily.

External loads:

• Auxiliary relays are provided with countless number of NO contact points and NC

contact points. These are freely available for use through out a PLC program. These

contacts cannot be used to directly drive external loads. All external loads should be

driven through the use of direct (Y) outputs.

4.3.3 Special Diagnostic Auxiliary Relays

A PLC has a number of special auxiliary relays. These relays all have specific functions

and are classified into the following two types.

a) Using contacts of special auxiliary relays

- Coils are driven automatically by the PLC. Only the contacts of these coils may be used

by a user defined program.

Examples: M8000: RUN monitor (ON during run)

M8002: Initial pulse (Turned ON momentarily when PLC starts)

M8012: 100 msec clock pulse

b) Driving coils of special auxiliary relays

- A PLC executes a predetermined specific operation when these coils are driven by the

user.

Examples: M8033: All output statuses are retained when PLC operation is stopped

M8034: All outputs are disabled

M8039: The PLC operates under constant scan mode

Available devices:

• Not all PLC‟s share the same range, quantity or operational meaning of diagnostic

auxiliary relays. Please check the availability and function before using any device. PLC

specific diagnostic ranges and meanings are available in chapter 6.

56

4.3.4 Special Single Operation Pulse Relays

When used with the pulse contacts LDP, LDF, etc., M devices in the range M2800 to

M3072 have a special meaning. With these devices, only the next pulse contact

instruction after the device coil is activated.

Turning ON X0 causes M0 to turn ON.

• Contacts①�,② and③are pulse contacts and activate for 1 scan.

• Contact④is a normal LD contact and activates while M0 is ON.

Turning ON X0 causes M2800 to turn ON.

• Contact⑥is a pulse contact and activates for 1 scan.

• Contacts⑤and⑦are pulse contacts of the same M device as contact⑥。

Contact⑥has already operated, so contact⑤and⑦do not operate.

• Contact⑧ is a normal LD contact and activates while M2800 is ON.

4.4 State Relays

Device Mnemonic: S

Purpose :Internal programmable controller status flag

Alias: State (coil/ relay/ contact/ flag)

S (coil/ relay/ contact /flag)

STL step (coil/ relay/ contact /flag)

Annunciator flag

Available forms: NO (�) and NC contacts and output coils (�)

(see example device usage for references)

Devices numbered in: Decimal, i.e. S0 to S9, S10 to S19

Example device usage:

57

4.4.1 General Stable State - State Relays

A number of state relays are used in the PLC. The coils of these relays are driven by

device contacts in the PLC in the same manner that the output relays are driven in the

program.

All state relays have a number of electronic NO and NC contacts which can be used by

the PLC as required. Note that these contacts cannot directly drive an external load. Only

output Relays can be used to do this.

4.4.2 Battery Backed/ Latched State Relays

There are a number of battery backed or latched relays whose status is retained in battery

backed or EEPROM memory. If a power failure should occur all output and general

purpose relays are switched off. When operation is resumed the previous status of these

relays is restored.

External loads:

• State relays are provided with countless number of NO contact points and NC contact

points, and are freely available for use through out a PLC program. These contacts cannot

be used to directly drive external loads. All external loads should be driven through the

use of direct (ex. Y) outputs.

4.4.3 STL Step Relays

States (S) are very important devices when programming

step by step process control. They are used in combination

with the basic instruction STL.

When all STL style programming is used certain states have

a pre-defined operation. The step identified as� in the figure

opposite is called an „initial state‟. All other state steps are

then used to build up the full STL function plan. It should be

remembered that even though remaining state steps are

58

used in an STL format, they still retain their general or latched operation status. The range

of available devices is as specified in the information point of the previous section.

Assigned states:

• When the applied instruction IST (Initial STate function 60) is used, the following state

devices are automatically assigned operations which cannot be changed directly by a

users program:

S0 : Manual operation initial state

S1 : Zero return initial state

S2 : Automatic operation initial state

S10 to S19 : Allocated for the creation of the zero return program sequence

Monitoring STL programs:

• To monitor the dynamic-active states within an STL program, special auxiliary relay

M8047 must be driven ON.

STL/SFC programming:

• For more information on STL/SFC style programming, please see chapter 3. IST

instruction:

• For more information on the IST instruction please FNC 60 in Chapter 5.

4.4.4 Annunciator Flags

Some state flags can be used as outputs for external diagnosis (called annunciation)

when certain applied instructions are used. These instructions are;

When the annunciator function is used the controlled state flags are in the range S900 to

S999 (100 points). By programming an external diagnosis circuit as shown below, and

monitoring special data register D8049, the lowest activated state from the annunciator

range will be displayed.

Each of the states can be assigned to signify an error or fault condition. As a fault occurs

the associated state is driven ON. If more than one fault occurs simultaneously, the lowest

fault number will be displayed. When the active fault is cleared the next lowest fault will

then be processed.

This means that for a correctly prioritized diagnostic system the most dangerous or

damaging faults should activate the lowest state flags, from the annunciator range. All

state flags used for the annunciator function fall in the range of battery backed/ latched

59

state registers.

Monitoring is enabled by driving special auxiliary relay M8049 ON.

State S900 is activated if input X0 is not driven within one second after the output Y0 has

been turned ON.

State S901 is activated when both inputs X1 and

X2 are OFF for more than two seconds.

If the cycle time of the controlled machine is less

than ten seconds, and input X3 stays ON, state

S902 will be set ON if X4 is not activated within

this machine cycle time.

If any state from S900 to S999 is activated, i.e.

ON, special auxiliary relay M8048 is activated to

turn on failure indicator output Y10. The states

activated by the users error / failure diagnosis

detection program, are turned OFF by activating

input X5. Each time X5 is activated, the active

annunciator states are reset in ascending order of

state numbers.

4.5 Pointers

Device Mnemonic: P

Purpose: Program flow control

Alias: Pointer

Program Pointer

P

Available forms: Label: appears on the left of the left hand bus bar when the program is

viewed in ladder mode.

Devices numbered in: Decimal, i.e. P0 to P9, P10 to P19

Example device usage:

60

Jumping to the end of the program:

• When using conditional jump instructions (CJ, function 00) the program end can be

jumped to automatically by using the pointer P63 within the CJ instruction. Labelling the

END instruction with P63 is not required.

Device availability:

• For more information about device availability for individual PLCs, please see chapter 8.

4.6 Interrupt Pointers

Device Mnemonic: I

Purpose: Interrupt program marker

Alias: Interrupt

High speed interrupt

I

Available forms: Label: appears on the left of the left hand bus bar when the program is

viewed in ladder mode

(see in the example device usage diagram).

Devices numbered in: Special numbering system based on interrupt device used and

input triggering method

Example device usage:

Additional applied instructions:

• Interrupts are made up of an interrupt device, an interrupt pointer and various usage of

three, dedicated interrupt applied instructions;

- IRET function 03: interrupt return

- EI function 04: enable interrupt

- DI function 05: disable interrupt

Nested levels:

• While an interrupt is processing all other interrupts are disabled. To achieve nested

interrupts the EI-DI instruction must be programmed within an interrupt routine. Interrupts

61

can be nested for two levels.

Pointer position:

• Interrupt pointers may only be used after an FEND instruction (first end instruction,

function 06)

4.6.1 Input Interrupts

Identification of interrupt pointer number:

0: interrupt triggered on trailing/ falling edge of input signal

1: interrupt triggered on leading/ rising edge of input signal

Input number; each input number can only be used once.

Rules of use:

• The following points must be followed for an interrupt to operate;

- Interrupt pointers cannot have the same number in the „100s‟ position, i.e. I100 and I101

are not allowed.

- The input used for the interrupt device must not coincide with inputs already allocated for

use by other high speed instructions within the user program.

4.6.2 Timer Interrupts

Identification of interrupt pointer number:

10 to 99 msec: the interrupt is repeatedly triggered at intervals of the

specified time.

Timer interrupt number 3 points (6 to 8)

Example: I610

The sequence programmed after the label (indicated by the I610 pointer) is executed at

intervals of 10msec. The program sequence returns from the interruption program when

an IRET instruction is encountered.

Rules of use:

• The following points must be followed for an interrupt to operate;

- Interrupt pointers cannot have the same number in the „100‟s‟ position, i.e. I610 and I650

62

are not allowed.

4.6.3 Disabling Individual Interrupts

Individual interrupt devices can be temporarily or permanently disabled by driving an

associated special auxiliary relay. The relevant coils are identified in the tables of devices

in chapter 6. However for all PLC types the head address is M8050, this will disable

interrupt I0□□.

Driving special auxiliary relays:

• Never drive a special auxiliary coil without first checking its use. Not all PLC‟s assign the

same use to the same auxiliary coils.

Disabling high speed counter interrupts

• These interrupts can only be disabled as a single group by driving M8059 ON.

Further details about counter interrupts can be found in the following section

4.6.4 Counter Interrupts

Identification of interrupt pointer number:

Counter interrupt number 6 points (1 to 6). Counter interrupts can

be entered as the output devices for High Speed Counter Set

(HSCS, FNC 53). To disable the Counter Interrupts Special

Auxiliary Relay M8059 must be set ON.

Example:

The sequence programmed after the label

(indicated by the I030 pointer) is executed once the

value of High Speed Counter C255

reaches/equals the preset limit of K100 identified in

the example HSCS.

Additional notes:

• Please see the following pages for more details on the HSSC applied instruction.

- High Speed Counter Set, HSCS FNC 53

4.7 Constant K

Device Mnemonic: K

63

Purpose: Identification of constant decimal values

Alias: Constant

K (value/ constant)

K

Available forms: Numeric data value, when used for 16bit data, values can be selected

from the range -32,768 to +32,767

For 32bit data, values from the range -2,147,483,648 to + 2,147,483,647 can be used.

Devices numbered in: N/A. This device is a method of local instruction data entry.

There is no limit to the number of times it can be used.

Further uses: K values can be used with timers, counters and applied instructions

Example device usage: N/A

4.8 Constant H

Device Mnemonic: H

Purpose: Identification of constant hexadecimal values

Alias: Constant

H (value/ constant)

Hex (value/ constant)

H

Available forms: Alpha-numeric data value, i.e. 0 to 9 and A to F (base 16).

When used for 16bit data, values can be selected from the range 0 to FFFF.

For 32bit data, values from the range 0 to FFFFFFFF can be used.

Devices numbered in: N/A. This device is a method of local instruction data entry.

There is no limit to the number of times it can be used.

Further uses: Hex values can be used with applied instructions

Example device usage: N/A

4.9 Timers

Device Mnemonic: T

Purpose: Timed durations

Alias: Timer(s)

T

Available forms: A driven coil sets internal PLC contacts (NO and NC contacts available).

Various timer resolutions are possible, from 1 to 100 msec, but availability and quantity

vary from PLC to PLC. The following variations are also available:-Selectable timer

resolutions

Further uses: None

Example device usage:

64

4.9.1 General timer operation

Timers operate by counting clock pulses (1, 10 and 100 msec). The timer output contact is

activated when the count data reaches the value set by the constant K. The overall

duration or elapsed time, for a timers operation cycle, is calculated by multiplying the

present value by the timer resolution, i.e.

A 10 msec timer with a present value of 567 has actually been operating for:

567×10 msec

567×0.01 sec = 5.67 seconds

Timers can either be set directly by using the constant K to specify the maximum duration

or indirectly by using the data stored in a data register (ex. D). For the indirect setting, data

registers which are battery backed/ latched are usually used; this ensures no loss of data

during power down situations. If however, the voltage of the battery used to perform the

battery backed service, reduces excessively, timer malfunctions may occur.

4.9.2 Selectable Timers

On certain programmable controllers, driving a special auxiliary coil redefines

approximately half of the 100 msec timers as 10 msec resolution timers. The following

PLC‟s and timers are nsubject to this type of selection.

Driving special auxiliary coils:

• Please check the definition of special auxiliary coils before using them. Not all PLC‟s

associate the same action to the same device.

4.9.3 Retentive Timers

A retentive timer has the ability to retain the currently reached present value even after the

drive contact has been removed. This means that when the drive contact is re-established

a retentive timer will continue from where it last reached.

Because the retentive timer is not reset when the drive contact is removed, a forced reset

must be used. The following diagram shows this in a graphical format.

65

4.9.4 Timers Used in Interrupt and ‘CALL’ Subroutines

If timers T192 to T199 and T246 to T249 are used in a CALL subroutine or an interruption

routine, the timing action is updated at the point when an END instruction is executed. The

output contact is activated when a coil instruction or an END instruction is processed once

the timers current value has reached the preset (maximum duration) value.

Timers other than those specified above cannot function correctly within the specified

circumstances.

When an interrupt timer (1 msec resolution) is used in an interrupt routine or within

a„CALL‟ subroutine, the output contact is activated when the first coil instruction of that

timer is executed after the timer has reached its preset (maximum duration) value.

4.9.5 Timer Accuracy

Timer accuracy can be affected by the program configuration. That is to say, if a timer

contact is used before its associated coil, then the timer accuracy is reduced. The

following formulas give maximum and minimum errors for certain situations.

However, an average expected error would be approximately;

1.5×The program scan time.

66

Condition 1:

The timer contact appears after the timer coil.

Maximum timing error:

2×Scan time + The input filter time

Minimum timing error:

Input filter time - The timer resolution

Condition 2:

The timer contact appears before the timer

coil.

Maximum timing error:

3×Scan time + The input filter time

Minimum timing error:

Input filter time- The timer resolution

Internal timer accuracy:

• The actual accuracy of the timing elements within the PLC hardware is; ± 10 pulses

per million pulses. This means that if a 100 msec timer is used to time a single day, at the

end of that day the timer will be within 0.8 seconds of the true 24 hours or 86,400 seconds.

The timer would have processed approximately 864,000; 100 msec pulses.

4.10 Counters

Device Mnemonic: C

Purpose: Event driven delays

Alias: Counter(s)

C

Available forms: A driven coil sets internal PLC contacts (NO and NC contacts available).

Various counter resolutions are possible including;

 (The availability and use of all these counters is PLC specific – please check availability

before use)

Devices numbered in:Decimal,i.eC0toC9,C10toC19

Further uses: None

Example device usage:

67

4.10.1 General/ Latched 16bit UP Counters

The current value of the counter increases each time coil

C0 is turned ON by X11. The output contact is activated

when the coil is turned ON for the tenth time (see diagram).

After this, the counter data remains unchanged when X11 is

turned ON. The counter current value is reset to„0‟ (zero)

when the RST instruction is executed by turning ON X10 in

the example. The output contact Y0 is also reset at the

same time.

Counters can be set directly using constant K or indirectly

by using data stored in a data register (ex. D). In an indirect

setting, the designation of D10 for example, which contains

the value“123” has the same effect as a setting of“K123”.

If a value greater than the counter setting is written to a

current value register, the counter counts up when the next input is turned ON.

This is true for all types of counters. Generally, the count input frequency should be

around several cycles per second.

Battery backed/latched counters:

• Counters which are battery backed/ latched are able to retain their status information,

even after the PLC has been powered down. This means on re-powering up, the latched

counters can immediately resume from where they were at the time of the original PLC

power down.

4.10.2 General/ Latched 32bit Bi-directional Counters

The counter shown in the example below, activates when its coil is driven, i.e. the C200

coil is driven. On every occasion the input X14 is turned from OFF to ON the current value

or current count of C200 is incremented.

68

The output coil of C200 is set ON when the current value increases from“-6”to “-5”.

However, if the counters value decreases from “-5”to“-6”the counter coil will reset. The

counters current value increases or decreases independently of the output contact state

(ON/OFF). Yet, if a counter counts beyond +2,147,483,647 the current value will

automatically change to -2,147,483,648. Similarly, counting below -2,147,483,648 will

result in the current value changing to +2,147,483,647. This type of counting technique is

typical for “ring counters”. The current value of the active counter can be rest to "0" (zero)

by forcibly resetting the counter coil; in the example program by switching the input X13

ON which drives the RST instruction. The counting direction is designated with special

auxiliary relays M8200 to M8234.

Battery backed/ latched counters:

• Counters which are battery backed/ latched are able to retain their status information,

even after the PLC has been powered down. This means on re-powering up, the latched

counters can immediately resume from where they were at the time of the original PLC

power down.

Selecting the counting direction:

• If M8☆☆☆for C☆☆☆is turned ON, the counter will be a down counter. Conversely,

the counter is an up counter when M8☆☆☆is OFF.

4.11 High Speed Counters

Device Mnemonic: C

Purpose: High speed event driven delays

Alias: Counter (s)

C

High speed counter (s)

Phase counters

Available forms: A driven coil sets internal PLC contacts (NO and NC contacts available).

69

There are various types of high speed counter available but the quantity and function vary

from PLC to PLC. Please check the following sections for device availability;

Devices numbered in: Decimal, i.e C235 to C255

Further uses: None

Example device usage: For examples on each of the available forms please see the

relevant sections

4.11.1 Basic High Speed Counter Operation

Although counters C235 to C255 (21 points) are all high speed counters, they share the

same range of high speed inputs. Therefore, if an input is already being used by a high

speed counter, it cannot be used for any other high speed counters or for any other

purpose, i.e as an interrupt input.

The selection of high speed counters are not free, they are directly dependent on the type

of counter required and which inputs are available.

Available counter types;

a) 1 phase bi-directional with user start/reset: C235 to C240

b) 1 phase bi-directional with assigned start/reset: C241 to C245

c) 1 phase two input bi-directional: C246 to C250

d) A/B phase type: C251 to C255

Please note ALL of these counters are 32bit devices.

High speed counters operate by the principle of interrupts. This means they are event

triggered and independent of cycle time. The coil of the selected counter should be driven

continuously to indicate that this counter and its associated inputs are reserved and that

other high speed processes must not coincide with them.

Example:

When X20 is ON, high speed counter

C235 is selected. The counter C235

corresponds to count input X0. X20 is

NOT the counted signal. This is the

continuous drive mentioned earlier.

X0 does not have to be included in

the program. The input assignment is

hardware related and cannot be changed by the user.

When X20 is OFF, coil C235 is turned OFF and coil C236 is turned ON. Counter C236 has

an assigned input of X1, again the input X20 is NOT the counted input. The assignment of

counters and input devices is dependent upon the PLC selected. This is explained in the

relevant, later sections.

70

Driving high speed counter coils:

• The counted inputs are NOT used to drive the

high speed counter coils.

This is because the counter coils need to be

continuously driven ON to reserve the

associated high speed inputs. Therefore, a

normal non-high speed drive contact should be used to drive the high speed counter coil.

Ideally the special auxiliary contact M8000 should be used. However, this is not

compulsory.

4.11.2 Availability of High Speed Counters

The following device table outlines the range of available high speed counters.

Key: U- up counter input D- down counter input

R- reset counter (input) S- start counter (input)

A- A phase counter input B- B phase counter input

 - Counter is backed up/latched

Input assignment:

• X6 and X7 are also high speed inputs, but function only as start signals. They

cannot be used as the counted inputs for high speed counters.

• Different types of counters can be used at the same time but their inputs must not

coincide. For example, if counter C247 is used, then the following counters and

71

instructions cannot be used; C235, C236, C237, C241, C242, C244, C245, C246, C249,

C251, C252, C254, I0□□, I1□□,I2□□

Counter Speeds:

• General counting frequencies:

- Single phase and bi-directional counters; up to 10 kHz.

- A/B phase counters; up to 5 kHz.

- Maximum total counting frequency (A/B phase counter count twice)

.• For Inputs X0 and X1 are equipped with special hardware that allows higher

speed counting as follows:

- Single phase or bi-directional counting (depending on unit) with C235, C236 or C246; up

to 60 kHz.

- Two phase counting with C251; up to 30 kHz

4.11.3 1 Phase Counters - User Start and Reset (C235 - C240)

These counters only use one input each.

When direction flag M8235 is ON, counter C235 counts down. When it is OFF, C235

counts up.

When X11 is ON, C235 resets to 0 (zero). All

contacts of the counter C235 are also reset.

When X12 is ON, C235 is selected. From the

previous counter tables, the corresponding

counted input for C235 is X0. C235 therefore

counts the number of times X0 switches from

OFF to ON.

Device specification:

• All of these counters are 32bit up/down ring counters. Their counting and contact

operations are the same as normal 32bit up/down counters described. When the counters

current value reaches its maximum or setting value, the counters associated contacts are

set and held when the counter is counting upwards. However, when the counter is

counting downwards the contacts are reset.

Setting range:

• -2,147,483,648 to +2,147,483,647

Direction setting:

• The counting direction for 1 phase counters is dependent on their corresponding flag

72

M8☆☆☆;where☆☆☆is the number of the corresponding counter, (C235 to C240).

When M8☆☆☆is ON the counter counts down,

When M8☆☆☆is OFF the counter counts up.

Using the SPD instruction:

• Care should be taken when using the SPD applied instruction. This instruction has both

high speed counter and interrupt characteristics, therefore input devices X0 through X5

may be used as the source device for the SPD instruction. In common with all high speed

processes the selected source device of the SPD instruction must not coincide with any

other high speed function which is operating, i.e. high speed counters or interrupts using

the same input.

When the SPD instruction is used it is considered by the system to be a 1 phase high

speed counter. This should be taken into account when summing the maximum combined

input signal frequencies - see the previous section.

4.11.4 1 Phase Counters - Assigned Start and Reset (C241 to C245)

These counters have one countable input and 1

reset input each. Counters C244 and

C245 also have a start input.

When the direction flag M8245 is ON, C245 counts

down. When it is OFF C245 will count up.

When X14 is ON, C245 resets in the same manner

as normal internal 32bit counters, but C245 can

also be reset by input X3. This is assigned

automatically when counter C245 is used (see previous counter tables).

Counter C245 also has an external start contact, again automatically assigned. This is

actually input X7. Once again this data can be found on the previous counter tables. When

X7 is ON, C245 starts counting, conversely when X7 is OFF C245 stops counting. The

input X15 selects and reserves the assigned inputs for the selected counter, i.e. in this

case C245.

The reason why these counters use assigned start (X7) and reset (X3) inputs is because

they are not affected by the cycle (scan) time of the program. This means their operation

is immediate and direct.

In this example C245 actual counts the number of OFF to ON events of input X2.

Note: Because C245 is a 32bit counter, its setting data, specified here by a data register

also has to be of a 32bit format. This means that data registers D1 and D0 are used as a

pair to provide the 32bit data format required.

Device specification:

73

• All of these counters are 32bit up/down ring counters. Their counting and contact

operations are the same as normal 32bit up/down counters described on chapter 4-21.

When the counters current value reaches its maximum or setting value, the counters

associated contacts are set and held when the counter is counting upwards.

However, when the counter is counting downwards the contacts are reset.

Setting range:

• -2,147,483,648 to +2,147,483,647

Direction setting:

• The counting direction for 1 phase counters is dependent on their corresponding flag

M8☆☆☆;where☆☆☆is the number of the corresponding counter, (C241 to C245).

- When M8☆☆☆is ON the counter counts down.

- When M8☆☆☆is OFF the counter counts up.

4.11.5 2 Phase Bi-directional Counters (C246 to C250)

These counters have one input for counting up and one input for counting down. Certain

counters also have reset and start inputs as well.

When X10 is ON, C246 resets in the same way as standard 32bit counters. Counter C246

uses inputs;

X0 to count up and

X1 to count down

For any counting to take place the drive input

X11 must be ON to set and reserve the

assigned inputs for the attached counter, i.e.

C246. Note:

X0 moving from OFF to ON will increment

C246 by one

X1 moving from ON to OFF will decrement C246 by one

Bi-directional counter C250 can be seen to have

X5 as its reset input and X7 as its start input.

Therefore, a reset operation can be made

externally without the need for the RST C250

instruction.

X13mustbeONtoselectC250.Butstart input X7 must be ON to allow C250 to actually count.

If X7 goes OFF counting ceases.

Counter C250 uses input X3 to count up and input X4 to count down.

Device size:

• All of these counters have 32bit operation.

Setting range:

• -2,147,483,648 to +2,147,483,647

74

Direction setting:

• The counting direction for 1 phase counters is dependent on their corresponding flag

M8☆☆☆;where☆☆☆is the number of the corresponding counter, (C241 to C245).

- When M8☆☆☆is ON the counter counts down,

- When M8☆☆☆is OFF the counter counts up.

4.11.6 A/B Phase Counters (C252 to C255)

With these counters only the input identified in the previous high speed counter tables can

be used for counting. The counting performed by these devices is independent of the

program cycle (scan) time. Depending on the counter

used, start, reset and other associated inputs are

automatically allocated.

The A phase, B phase input signal not only provide the

counted signals but their relationship to each other will

also dictate the counted direction.

While the wave form of the A phase is in the ON state

and... the B phase moves from OFF to ON the counter

will be counting up. However, if... the B phase moves

from ON to OFF the counter will be in a down

configuration.

One count is registered after both A and B phase

inputs have been given and released in the correct order.

C251 counts the ON/OFF events of input X0 (the A

phase input) and input X1 (the B phase input) while

X11 is ON.

C255 starts counting immediately when X7 is turned

ON while X13 is ON. The counting inputs are X3 (A

phase) and X4 (B phase). C255 is reset when X5 is

turned ON. It can also be reset with X12 in the

sequence.

Device specification:

• A maximum of 2 points - 2 phase, 32bit, up/down counters can be used. The operation

of the output contact in relation to the counted data is the same as standard 32bit counters

75

described in section 4.11.

Setting range:

• -2,147,483,648 to +2,147,483,647

Direction setting:

• Check the corresponding special relay M8���to determine if the counter is counting

up or down.

4.12 Data Registers

Device Mnemonic: D

Purpose: A storage device capable of storing numeric data or 16/32bit patterns

Alias: Data (register/ device/ word)

D (register)

D

Word

Devices numbered in: Decimal, i.e. D0 to D9, D10 to D19

Further uses: Can be used in the indirect setting of counters and timers

Example device usage: None

Available devices:

 HCA2

General use

registers

128 (D0 - 127)

Latched registers 7872 (D128 –

7999)

Diagnostic

registers

256 (D8000 -

8255)

File registers R 7000 (D1000 -

7999)

Adjustable

registers F

2 (D8030 - 8031)

R - These devices are allocated by the user at the expense of available program steps.

On these devices are a subset of the latched registers.

F - These devices are also included under the count for diagnostic registers

4.12.1 General Use Registers

Data registers, as the name suggests, store data. The stored data can be interpreted as a

numerical value or as a series of bits, being either ON or OFF.

76

A single data register contains 16bits or one word. However, two consecutive data

registers can be used to form a 32bit device more commonly known as a double word. If

the contents of the data register is being considered numerically then the Most Significant

Bit (MSB) is used to indicate if the data has a positive or negative bias. As bit devices can

only be ON or OFF, 1 or 0 the MSB convention used is, 0 is equal to a positive number

and 1 is equal to a negative number.

The diagram above shows both single and double register configurations. In the diagram,

at point②, it should be noted that the „lower‟ register D0 no longer has a „Most Significant

Bit‟. This is because it is now being considered as part of a 32bit-double word. The MSB

will always be found in the higher 16 bits, i.e. in this case D1. When specifying a 32 bit

data register within a program instruction, the lower device is always used e.g. if the

above example was to be written as a 32bit instructional operand it would be identified as

D0. The second register, D1, would automatically be associated.

Once the data is written to a general data register, it remains unchanged until it is

overwritten.

When the PLC is turned from RUN to STOP all of the general data registers have their

current contents overwritten with a 0 (zero).

Data retention:

• Data can be retained in the general use registers when the PLC is switched from RUN

to STOP if special auxiliary relay M8033 is ON.

Data register updates:

• Writing a new data value to a data register will result in the data register being updated

with the new data value at the end of the current program scan.

77

4.12.2 Battery Backed/ Latched Registers

Once data is written to a battery backed register, it remains unchanged until it is

overwritten. When the PLC‟s status is changed from RUN to STOP, the data in these

registers is retained.

The range of devices that are battery backed can be changed by adjusting the parameters

of the PLC. For details of how to do this please refer to the appropriate programming tools

manual.

4.12.3 Special Diagnostic Registers

Special registers are used to control or monitor various modes or devices inside the PLC.

Data written in these registers are set to the default values when the power supply to the

PLC is turned ON.

- Note: When the power is turned ON, all registers are first cleared to 0 (zero) and then

the default values are automatically written to the appropriate registers by the system

software. For example, the watchdog timer data is written to D8000 by the system

software. To change the setting, the user must write the required value over what is

currently stored in D8000.

Data stored in the special diagnostic registers will remain unchanged when the PLC is

switched from STOP mode into RUN.

Use of diagnostic registers:

• On no account should unidentified devices be used. If a device is used, it should only be

for the purpose identified in this manual. Please see chapter 6 for tables containing data

and descriptions of the available devices for each PLC.

4.12.4 File Registers

Program memory registers

File registers can be secured in the program memory (EEPROM or EPROM) in units of

500 points. These registers can be accessed with a peripheral device. While the PLC is

operating, data in the file registers can be read to the general-use/ battery backed/ latched

registers by using the BMOV instruction.

File registers are actually setup in the parameter area of the PLC. For every block of 500

file registers allocated and equivalent block of 500 program steps are lost.

Note: The device range for file registers in the HCA2,and overlaps with the latched

data registers. The allocation of these devices as file registers ensures that the data is

kept with the program.

78

Writing to file registers:

For details of how to carry out the changes please reference the relevant operation

manual for guidance.

• HCAA2, file register data can also be changed by the PLC program using the BMOV

instruction.

• No file registers can be modified during RUN

Available devices:

• Please refer to chapters 6 and 8, where further details of the available devices can be

found.

4.12.5 Externally Adjusted Registers

The HCA2have built in “setting pots” which are used to adjust the contents of certain

dedicated data registers. The contents of these registers can

range from 0 to 255. This is a built in feature and requires no

additional setup or programming.

The do not have this feature, however, an additional

special function unit is available which provides the same

function. The unit required is the -8AV-BD. For use, this

unit requires the applied instructions VRRD function 85

(Volume Read) and VRSC function 86 (Volume Scale).

Uses:

• This facility is often used to vary timer settings, but it can be used in any application

where a data register is normally found, i.e. setting counters, supplying raw data, even

selection operations could be carried out using this option.

4.13 Index Registers

Device Mnemonic: V,Z

Purpose: To modify a specified device by stating an offset.

Alias: (V/ Z) Register

Index (register/ addressing/ modifier)

Offset(s) (register/ addressing/ modifier)

Indices

Modifier

Available forms:

79

For 16bit data V or Z

(2 devices)

For 32bit data V and Z combined

(1 device - Z is specified)

Operation is similar to data registers

Devices numbers: 16 devices V0 - V7 and Z0 - Z7

Further uses: Can be used to modify the following devices under certain conditions;

X, Y, M, S, P, T, C, D, K, H, KnX, KnY, KnM, KnS

Example device usage:

The program shown right transfers data from D5V to D10Z.

If the data contained in register V is equal to 8 and the data in register Z is equal to 14,

then:

V=8

D5V

D5 +8 =13�D13

Z=14

D10Z

D10 + 14 = 24�D24

Hence, the actual devices used after the modifiers V and Z have been taken into account

are;

D13 and D24 and not D5 and D10 respectively.

Use of Modifiers with Applied Instruction Parameters:

• All applied instruction parameters should be regarded as being able to use index

registers to modify the operand except where stated otherwise.

4.13.1 Modifying a Constant

Constants can be modified just as easily as data registers or bit devices. If, for example,

the constant K20 was actually written K20V the final result would equal:

K20 + the contents of V

Example:

4.13.2 Misuse of the Modifiers

Modifying Kn devices when Kn forms part of a device description such as KnY is not

possible,

80

i.e. while the following use of modifiers is permitted;

K3Z

K1M10V

Y20Z

Statements of the form:

K4ZY30

are not acceptable.

• Modifiers cannot be used for parameters entered into any of the 20 basic

instructions, i.e. LD, AND, OR etc.

4.13.3 Using Multiple Index Registers

The use of multiple index registers is sometimes necessary in larger programs or

programs which handle large quantities of data. There is no problem from the PLC‟s point

of view in using both V and Z registers many times through out a program. The point to be

aware of is that it is sometimes confusing for the user or a maintenance person reading

such programs, as it is not always clear what the current value of V or Z is.

Example:

V = 10 (K10)

Z = 20 (K20)

D5V = D15 (D5 + V = D5 + 10 = D15)

D15Z = D35 (D15 + Z = D15 + 20 = D35)

D40Z = D60 (D40 + Z = D40 + 20 = D60)

Both V and Z registers are initially set to K10 and

K20 respectively.

The contents of D15 is added to that of D35 and

store in D60.

V is then reset to 0 (zero) and both V and Z are used in the double word addition (DADD).

The contents of D1, D0 are then added to D3, D2 and then finally stored in D25, D24.

4.14 Bits, Words, BCD and Hexadecimal

The following section details general topics relating to good device understanding. The

section is split into several smaller parts with each covering one topic or small group of

topics. Some of the covered topics are;

Available devices:

• For PLC specific available devices please see chapter 8.

81

4.14.1 Bit Devices, Individual and Grouped

Devices such as X, Y, M and S are bit devices. Bit devices are bi-stable, this means there

are only two states, ON and OFF or 1 and 0. Bit devices can be grouped together to form

bigger representations of data, for example 8 consecutive bit devices are some-times

referred to as a byte. Furthermore, 16 consecutive bit devices are referred to as a word

and 32 consecutive bit devices are a double word.

The PLC identifies groups of bit devices which should be regarded as a single entity by

looking for a range marker followed by a head address. This is of the form KnP where

Prepresents the head address of the bit devices to be used. The Kn portion of the

statement identifies the range of devices

enclosed.“n”canbeanumberfromtherange0to8.Each“n” digit actual represents 4 bit

devices, i.e K1 = 4 bit devices and K8 = 32 bit devices. Hence all groups of bit devices are

divisible by 4.

The diagram and example on the following page explain this idea further........

Assigning grouped bit devices:

As already explained, bit devices can be grouped into 4 bit units. The“n”in KnM0 defines

the number of groups of 4 bits to be combined for data operation. K1 to K4 are allowed for

16bit data operations but K1 to K8 are valid for 32bit operations.

K2M0, for example identifies 2 groups of 4 bits; M0 to M3 and M4 to M7, giving a total of 8

bit devices or 1 byte. The diagram below identifies more examples of Kn ☆use.

K1X0 : X0 to X3→4 bit devices with a head address of X0

K1X6 : X6 to X11→4 bit devices with a head address of X6

K3X0 : X0 to X13→12 bit devices with a head address of X0

K8X0 : X0 to X37→32 bit devices with a head address of X0

Moving grouped bit devices:

• If a data move involves taking source data and moving it into a destination which is

smaller than the original source, then the overflowing source data is ignored. For example;

If K3M20 is moved to K1M0 then only M20 to M23 or K1M20 is actually moved. The

82

remaining data K2M24 or M24 to M31 is ignored.

Assigning I/O:

• Any value taken from the available range of devices can be used for the head address

‘marker‟ of a bit device group. However, it is recommended to use a 0 (zero) in the

lowest digit place of X and Y devices (X0, X10, X20.....etc). For M and S devices, use of a

multiple of“8”is the most device efficient. However, because the use of such numbers may

lead to confusion in assigning device numbers, it recommended to use a multiple of “10”.

This will allow good correlation to X and Y devices.

4.14.2 Word Devices

Word devices such as T, C, D, V and Z can store data about a particular event or action

within the PLC. For the most part these devices are 16 bit registers. However, certain

variations do have 32 bit capabilities, as can pairs of consecutive data registers or

combined V and Z registers.

It may seem strange to quote the size of a word device in bits. This is not so strange when

it is considered that the bit is the smallest unit of data within the PLC. So by identifying

everything in bit format a common denomination is being used, hence comparison etc is

much easier.

Additional consequences of this bit interpretation is that the actual data can be interpreted

differently. The physical pattern of the active bits may be the important feature or perhaps

the numerical interpretation of the bit pattern may be the key to the program. It all comes

down to how the information is read.

4.14.3 Interpreting Word Data

As word data can be read in many ways the significance of certain parts of the word data

can change. PLC‟s can read the word data as:

- A pure bit pattern

- A decimal number

- A hexadecimal number

- Or as a BCD (Binary Coded Decimal) number

The following examples will show how the same piece of data can become many different

things depending wholly on the way the information is read or interpreted.

a) Considering a bit pattern

The following bit pattern means nothing - it is simply 16 devices which have two states.

Some of the devices are randomly set to one of the states. However, if the header notation

(base 2) is added to the 16 bit data the sum, decimal, total of the active bits can be

calculated, e.g.,

83

This is in fact incorrect!

There is one bit device which has been shaded in. If its header notation is studied carefully

it will be noted that it says MSB. This is the Most Significant Bit. This single bit device will

determine if the data will be interpreted as a positive or negative number. In this example

the MSB is equal to 1. This means the data is negative.

The answer however, is not -7797.

The reason this is not -7797 is because a negative value is calculated using two‟s

compliment (described later) but can quickly be calculated in the following manner:

Because this is a negative number, a base is set as -32768. This is the smallest number

available with 16bit data. To this the positive sum of the active bits is added, i.e. -32768 +

7797.

The correct answer is therefore -24971.

Remember this is now a decimal representation of the original 16 bit - bit pattern. If the

original pattern was re-assessed as a hexadecimal number the answer would be different.

b) A hexadecimal view

Taking the same original bit pattern used in point a) and now adding a hexadecimal

notation instead of the binary (base 2) notation the bit patterns new meaning becomes:

Two things become immediately obvious after a hexadecimal conversion. The first is that

84

there is sign bit as hexadecimal numbers are always positive.

The second is there is an "E" appearing in the calculated data. This is actually acceptable

as hexadecimal counts from 0 to 15. But as there are only ten digits (0 to 9), substitutes

need to be found for the remaining base 16 numbers, i.e. 10, 11, 12, 13, 14 and 15. The

first six characters from the alphabet are used as the replacement indices, e.g. A to F

respectively.

As a result of base 16 counting, 4 binary bits are required to represent one base 16 or

hexadecimal number. Hence, a 16 bit data word will have a 4 digit hexadecimal code.

There is actually a forth interpretation for this bit sequence. This is a BCD or Binary Coded

Decimal reading. The following section converts the original bit pattern into a BCD format.

c) ABCD conversion

Using the original bit pattern as a base but adding the following BCD headers allows the

conversion of the binary data into a BCD format.

Binary Coded Decimal value= ERROR!!!!!

It will be noticed that this will produce an ERROR. The conversion will not be correct. This

is because BCD numbers can only have values from 0 to 9, but the second block of 4 bit

devices from the left would have a value of 14. Hence, the error.

The conversion process is very similar to that of hexadecimal except for the mentioned

limit on values of 0 to 9. If the other blocks were converted just as an example the

following values would be found;

Extreme Left Hand Block= ((1×8) + (1×1)) = 9

Second Right Hand Block= ((1×4) + (1×2) + (1×1)) = 7

Extreme Right Hand Block= ((1×4) + (1×1)) = 5

BCD data is read from left to right as a normal number would be read. Therefore, in this

example the“9”would actually represent“9000”. The second right hand block is actually

“70”not“7”. The units are provided by the extreme right hand block, i.e. 5. The hundreds

“100‟s”would have been provided by the second left hand block (which is in error). It is

also important to note that there is no sign with BCD converted data. The maximum

number allowable for a single data word is“9999”and the minimum is“0000”.

85

Word Data Summary

In each of the previous cases the original bit pattern had a further meaning. To recap the

three new readings and the original bit pattern.

Decimal : -24971

Hexadecimal : 9E75

BCD : Error (9?75)

Each meaning is radically different from the next yet they are all different ways of

describing the same thing. They are in fact all equal to each other!

4.14.4 Two’s Compliment

Programmable controllers, computers etc, use a format called 2‟s compliment. This is a

mathematical procedure which is more suited to the micro processors operational

hardware requirements. It is used to represent negative numbers and to perform

subtraction operations.

The procedure is very simple, in the following example“15 - 7”is going to be solved:

Step1: Find the binary values (this example uses 8 bits)

15 = 00001111

7 = 00000111

Step2: Find the inversion of the value to be subtracted.

Procedure: invert all 1ísto0ís and all 0ísto1‟s.

7 = 00000111

Inverted 7 = 11111000

Step3: Add 1 to the inverted number.

Procedure: add 1 to the right hand most bit. Remember this is binary addition hence,

when a value of 2 is obtained 1 is moved in to the next left hand position and the

remainder is set to 0 (zero);

Inverted7 11111000

Additional1 00000001

Answer 11111001

This result is actually the same as the negative value for 7 i.e. -7.

Step4:Add the answer to the number the subtraction is being made from (i.e. 15).

86

Procedure: Remember 1+1 = 0 carry 1 in base 2 (binary).

Original value 15 00001111

Answer found in step3 11111001

Solution (1) 00001000

The“(1)”is a carried “1”and is ignored as this example is only dealing with 8 bits.

Step 5:Convert the answer back.

00001000 = 8

The answer is positive because the MSB (the most left hand bit) is a 0 (zero). If a quick

mental check is made of the problem it is indeed found that“15-7 = 8”.

In fact no subtraction has taken place. Each of the steps has either converted some data

or performed an addition. Yet the answer is correct 15 - 7 is 8. This example calculation

was based on 8 bit numbers but it will work equally well on any other quantity of bits.

4.15 Floating Point And Scientific Notation

PLC‟s can use many different systems and methods to store data.

The most common have already been discussed in previous sections e.g. BCD, Binary,

Decimal, Hex. These are what is known as „integer‟ formats or „whole number formats‟.

As the titles suggest these formats use only whole numbers with no representation of

fractional parts. However, there are two further formats which are becoming increasingly

important and they are:

a) Floating point and

b) Scientific notation

Both of these formats are in fact closely related. They both lend themselves to creating

very large or very small numbers which can describe both whole and fractional

components.

General note:

• Sometimes the words„Format‟, „Mode‟ and„Notation‟ are interchanged when

descriptions of these numerical processes are made. However, all of these words are

providing the same descriptive value and as such users should be aware of their

existence.

Some useful constants

87

4.15.1 Scientific Notation

This format could be called the step between the „integer‟ formats and the full floating

point formats. In basic terms Scientific Notation use two devices to store information about

a number or value. One device contains a data string of the actual characters in the

number (called the mantissa), while the second device contains information about the

number of decimal places used in the number (called the exponent). Hence, Scientific

Notation can accommodate values greater/smaller than the normal 32 bit limits, i.e.

-2,147,483,648 to 2,147,483,647 where Scientific Notation limits are;

Maximums Minimums

9999*1035 9999*10-41

-9999*1035 -9999*10-41

The following points should be remembered about the use of Scientific Notation within

appropriate PLC units;

• The mantissa and exponent are stored in consecutive data registers.

Each part is made up of 16 bits and can

be assigned a positive or negative

value indicated by the value of the most

significant bit (MSB, or bit 15 of the

data register) for each number.

• The mantissa is stored as the first 4

significant figures without any rounding

of the number, i.e. a floating point

number of value

2.34567*103wouldbestoredasa mantissa of 2345 at data register D and an exponent of 0

(zero) at data register D+1.

• The range of available mantissa values is 0, 1000 to 9999 and -1000 to -9999.

• The range of available exponent values is +35 through to -41.

• Scientific format cannot be used directly in calculations, but it does provide an ideal

method of displaying the data on a monitoring interface.

88

4.15.2 Floating Point Format

Floating point format extends the abilities and ranges provided by Scientific Notation with

the ability to represent fractional portions of whole numbers, for example;

Performing and displaying the calculation of 22 divided by 7 would yield the following

results:

a) Normal HC operation using decimal (integers) numbers would equal 3 remainder 1

b) In floating point it would equal 3.14285 (approximately)

c) In Scientific format this calculation would be equal to 3142*10-3

So it can be seen that a greater degree of accuracy is provided by floating point numbers,

i.e. through the use of larger numerical ranges and the availability of more calculable

digits.

Hence, calculations using floating point data have some significant advantages. Decimal

data can be converted in to floating point by using the FLT, float instruction (FNC 49).

When this same instruction is used with the float fag M8023 set ON, floating point

numbers can be converted back to decimal..

The following points should be remembered about the use of Floating Point within

appropriate PLC units.

• Floating point numbers, no matter what numerical value, will always occupy two

consecutive data registers (or 32 bits).

• Floating point values cannot be directly monitored, as they are stored in a special

format recommended by the I.E.E.E (Institute of Electrical and Electronic Engineers) for

personal and micro computer applications.

• Floating point numbers have both mantissa and exponents (see Scientific Notation for

an explanation of these terms). In the case

of floating point exponents, only 8 bits are

used.

Additionally there is a single sign bit for the

mantissa. The remaining bits of the 32 bit

value, i.e. 23 bits, are used to „describe‟ the

mantissa value.

Valid ranges for floating point numbers as used in Main Processing Units:

89

4.15.3 Summary Of The Scientific Notation and Floating Point Numbers

The instruction needed to convert between each number format are shown below in a

diagrammatically format for quick and easy reference.

5. Applied Instructions

Applied Instructions are the „specialist‟ instructions of the family of PLC‟s. They

allow the user to perform complex data manipulations, mathematical operations while still

being very easy to program and monitor. Each applied instruction has unique mnemonics

and special function numbers. Each applied instruction will be expressed using a table

similar to that shown below:

90

The table will be found at the beginning of each new instruction description. The area

identified as „Operands‟ will list the various devices (operands) that can be used with the

instruction.

Various identification letters will be used to associate each operand with its function, i.e.

D- destination, S- source, n, m- number of elements. Additional numeric suffixes will be

attached if there are more than one operand with the same function.

Not all instructions and conditions apply to all PLC‟s. Applicable CPU‟s are identified by

the boxes in the top right hand corner of the page. For more detailed instruction variations

a second indicator box is used to identify the availability of pulse, single (16 bit) word and

double (32 bit) word format and to show any flags that are set by the instruction.

No modification of the instruction mnemonic is required for 16 bit operation. However,

pulse operation requires a„P‟ to be added directly after the mnemonic while 32 bit

operation requires a„D‟ to be added before the mnemonic. This means that if an instruction

was being used with both pulse and 32 bit operation it would look like..... D☆☆☆P where

☆☆☆was the basic mnemonic.

The „pulse‟ function allows the associated instruction to be activated on the rising edge of

the control input. The instruction is driven ON for the duration of one program scan.

Thereafter, while the control input remains ON, the associated instruction is not active. To

re-execute the instruction the control input must be turned from OFF to ON again. The

FLAGS section identifies any flags that are used by the instruction. Details about the

function of the flag are explained in the instructions text.

• For instructions that operate continuously, i.e. on every scan of the program the

instruction will operate and provide a new, different result, the following identification

symbol will be used �‟to represent a high speed changing state. Typical instructions

covered by this situation have a strong incremental, indexable element to their operation.

• In most cases the operands of applied instructions can be indexed by a users program.

For those operands which cannot be indexed, the symbol has been used to signify an

operand as being „fixed‟ after it has been written.

91

• Certain instructions utilize additional data registers and/or status flags for example

a math function such as ADD (FNC 20) can identify a zero result, borrow and carry

conditions by using preset auxiliary relays, M8020 to M8021 respectively.

Applied Instructions:

92

5.1 Program Flow-Functions 00 to 09

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

93

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D1,S3or for lists/tabled devices D3+0,S+9etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number,

i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆- An instruction operating in 16 bit mode, where ☆☆☆identifies the instruction

mnemonic.

☆☆☆P - A 16 bit mode instruction modified to use pulse (single) operation.

D☆☆☆- An instruction modified to operate in 32 bit operation.

D☆☆☆ P - A 32 bit mode instruction modified to use pulse (single) operation.

A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.

An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

will have no effect to the value of the operand.

5.1.1 CJ (FNC 00)

Operation:

When the CJ instruction is active it forces the

program to jump to an identified program marker.

While the jump takes place the intervening

pro-gram steps are skipped. This means they are

not processed in any way. The resulting effect is to

speed up the programs operational scan time.

94

Points to note:

a) Many CJ statements can reference a single pointer.

b) Each pointer must have a unique number. Using

pointer P63 is equivalent to jumping to the END

instruction.

c) Any program area which is skipped, will not update

output statuses even if the input devices change.

For example, the program opposite shows a

situationwhichloadsX1todriveY1.AssumingX1 is ON and

the CJ instruction is activated the load X1, out Y1 is

skipped. Now even if X1 is turned OFF Y1 will remain

ON while the CJ instruction forces the program to skip to

the pointer P0. The reverse situation will also apply, i.e. if

X1 is OFF to begin with and the CJ instruction is driven,

Y1 will not be turned ON if X1 is turned ON. Once the CJ

instruction is deactivated X1 will drive Y1 in the normal

manner. This situation applies to all types of outputs, e.g. SET, RST, OUT, Y, M & S

devices etc.

d) The CJ instruction can jump to any point within the main program body or after an

FEND instruction.

e) A CJ instruction can be used to Jump forwards

through a program, i.e. towards the END instruction

OR it can jump backwards towards step 0. If a

backwards jump is used care must be taken not to

overrun the watchdog timer setting otherwise the PLC will enter an error situation.

f) Unconditional jumps can be entered by using special auxiliary coils such as M8000. In

thissituation while the PLC is in RUN the program will ALWAYS execute the CJ instruction

in an unconditional manner.

IMPORTANT:

• Timers and counters will freeze their current values if they are skipped by a CJ

instruction. For example if Y1 in the previous program (see point c) was replaced by T0

K100 and the CJ instruction was driven, the contents of T0 would not change/increase

until the CJ instruction is no longer driven, i.e. the current timer value would freeze. High

speed counters are the only exception to this situation as they are processed

independently of the main program.

Using applied instructions:

95

• Applied instructions are also skipped if they are programmed between the CJ

instruction and the destination pointer. However, The PLSY (FNC 57) and PWM (FNC 58)

instructions will operate continuously if they were active before the CJ instruction was

driven, otherwise they will be processed, i.e. skipped, as standard applied instructions.

5.1.2 CALL (FNC 01)

Operation:

When the CALL instruction is active it

forces the program to run the subroutine

associated with the called pointer (area

identified as subroutine P10). A CALL

instruction must be used in conjunction

with FEND (FNC 06) and SRET (FNC

02) instructions. The program jumps to

the subroutine pointer (located after an

FEND instruction) and processes the

contents until an SRET instruction is

encountered. This forces the program flow back to the line of ladder logic immediately

following the original CALL instruction.

Points to note:

a) Many CALL statements can reference a single subroutine.

b) Each subroutine must have a unique pointer number. Subroutine pointers can be

selected from the range P0 to P62. Subroutine pointers and the pointers used for CJ (FNC

00) instructions are NOT allowed to coincide.

c) Subroutines are not normally processed as they occur after an FEND instruction. When

they are called, care should be taken not to overrun

the watchdog timer setting.

d) Subroutines can be nested for 5 levels including the

initial CALL instruction. As an example the program

shown opposite shows a 2 level nest.

When X1 is activated the program calls subroutine P11.

Within this subroutine is a CALL to a second

subroutine P12. When both subroutines P11 and P12

96

are active simultaneously, they are said to be nested. Once subroutine P12 reaches its

SRET instruction it returns the program control to the program step immediately following

its original CALL (see①). P11 then completes its operation, and once its SRET instruction

is processed the program returns once again to the step following the CALL P11

statement (see ②).

Special subroutine timers:

• Because of the chance of intermittent use of the subroutines, if timed functions are

required the timers used must be selected from the range T192 to T199 and T246 toT249.

 5.1.3 SRET (FNC 02)

Operation:

SRET signifies the end of the current subroutine and returns the program flow to the step

immediately following the CALL instruction which activated the closing subroutine.

Points to note:

a) SRET can only be used with the CALL instruction.

b) SRET is always programmed after an FEND instruction - please see the CALL (FNC01)

instruction for more details.

5.1.4 IRET, EI, DI (FNC 03, 04, 05)

Mnemonic Function Operands Program steps

D

IRET FNC 03

(Interrupt return)

Forces the program to

return

from the active interrupt

routine

N/A Automatically returns

to the main program step

which was being

processed at the time of

the interrupt call.

IRET:

1step

EIFNC 04

(Enable

interrupts)

Enables interrupt

inputs to be processed

N/A

Any interrupt input being

activated after an EI

EI:

1step

97

instruction and before

FEND or DI instructions

will be processed

immediately unless it has

been specifically disabled.

DI

FNC 05 (Disable

interrupts)

Disables the processing of

interrupt routines

N/A Any interrupt input

being activated after a DI

instruction and before an

EI instruction will be

stored until the next

sequential EI instruction is

processed.

DI:

1step

I

(Interrupt pointer)

Identifies the beginning of

an

interrupt routine

A 3 digit numeric code

relating to the interrupt

type and operation

I☆☆☆:

1step

General description of an interrupt routine:

An interrupt routine is a section of program which is, when triggered, operated

immediately interrupting the main program flow. Once the interrupt has been processed

the main program flow continues from where it was, just before the interrupt originally

occurred.

Operation:

Interrupts are triggered by different input conditions, sometimes a direct input such as X0

is used other times a timed interval e.g. 30 msec can be used. The availability of different

interrupt types and the number operational points for each PLC type are detailed on 4-12,

Interrupt Pointers. To program and operate interrupt routines requires up to 3 dedicated

instructions (those detailed in this section) and an interrupt pointer.

Defining an interrupt routine:

An interrupt routine is specified between its own

unique interrupt pointer and the first occurrence

of an IRET instruction.

Interrupt routines are ALWAYS programmed

after an

FEND instruction. The IRET instruction may

only be used within interrupt routines.

Controlling interrupt operations:

The PLC has a default status of disabling interrupt operation. The EI instruction must be

used to activate the interrupt facilities. All interrupts which physically occur during the

program scan period from the EI instruction until the FEND or DI instructions will have

98

their associated interrupt routines run. If these interrupts are triggered outside of the

enclosed range (EI-FEND or EI-DI, see diagram below) they will be stored until the EI

instruction is processed on the following scan. At this point the interrupt routine will be run.

If an individual interrupt is to be disabled its associated special M coil must be driven ON.

While this coil is ON the interrupt routine will not be activated. For details about the

disabling M coils see the PLC device tables in chapter 8.

Nesting interrupts:

Interrupts may be nested for two levels. This means that an interrupt may be interrupted

during its operation. However, to achieve this, the interrupt routine which may be further

interrupted must contain the EI and DI instructions; otherwise as under normal operation,

when an interrupt routine is activated all other interrupts are disabled.

Simultaneously occurring interrupts:

If more than one interrupt occurs sequentially, priority is given to the interrupt occurring

first. If two or more interrupts occur simultaneously, the interrupt routine with the lower

pointer number is given the higher priority.

Using general timers within interrupt routines:

BRASILTEC PLC‟s have a range of special timers which can be used within interrupt

routines. Timers Used in Interrupt and „CALL‟ Subroutines.

Input trigger signals - pulse duration:

Interrupt routines which are triggered directly by interrupt inputs, such as X0 etc., require a

signal duration of approximately 200µsec, i.e. the input pulse width is equal or greater

than200µsec. When this type of interrupt is selected, the hardware input filters are

automatically reset to 50µsec. (under normal operating circumstances the input filters are

set to 10msec.).

Pulse catch function:

Direct high speed inputs can be used to „catch‟ short pulsed signals. When a pulse is

received at an input a corresponding special M coil is set ON. This allows the „captured‟

pulse to be used to trigger further actions, even if the original signal is now OFF. HCA2,

units require the EI instruction (FNC 04) to activate pulse catch for inputs X0 through X5,

with M8170 to M8175 indicating the caught pulse. Note that, if an input device is being

99

used for another high speed function, then the pulse catch for that device is disabled.

Operation:

An FEND instruction indicates the first end of a main program and the start of the program

area to be used for subroutines. Under normal operating circumstances the FEND

instruction performs a similar action to the END instruction, i.e. output processing, input

processing and watchdog timer refresh are all carried out on execution.

Points to note:

a) The FEND instruction is commonly used with CJ-P-FEND, CALL-P-SRET and I-IRET

program constructions (P refers to program pointer, I refers to interrupt pointer). Both

CALL pointers/subroutines and interrupt pointers (I) subroutines are ALWAYS

programmed after an FEND instruction, i.e. these program features NEVER appear in the

body of a main program.

b) Multiple occurrences of FEND instructions can be used to separate different

subroutines (see diagram above).

c) The program flow constructions are NOT allowed to be split by an FEND instruction.

d) FEND can never be used after an END instruction.

100

5.1.5 WDT (FNC 07)

Operation:

The WDT instruction refreshes the PLC‟s

watchdog timer. The watchdog timer checks

that the program scan (operation) time does not exceed an arbitrary time limit. It is

assumed that if this time limit is exceeded there is an error at some point. The PLC will

then cease operation to prevent any further errors from occurring. By causing the

watchdog timer to refresh (driving the WDT instruction) the usable scan (program

operation) time is effectively increased.

Points to note:

a) When the WDT instruction is used it will operate on every program scan so long as its

input condition has been made.

To force the WDT instruction to operate for only ONE scan requires the user to program

some form of interlock.

b) The watchdog timer has a default setting of

200 msec. This time limit may be customized to

a users own requirement by editing the

contents of data register D8000, the watchdog

timer register.

101

5.1.6 FOR, NEXT (FNC 08, 09)

Operation:

The FOR and NEXT instructions allow the

specification of an area of program, i.e. the

program enclosed by the instructions, which is to

be repeated S number of times.

Points to note:

a) The FOR instruction operates in a 16 bit mode hence, the value of the operand S may

be within the range of 1 to 32,767. If a number between the range -32,768 and 0 (zero) is

specified it is automatically replaced by the value 1, i.e. the FOR-NEXT loop would

execute once.

b) The NEXT instruction has NO operand.

c) The FOR-NEXT instructions must be programmed as a pair e.g. for every FOR

instruction there MUST be an associated NEXT instruction. The same applies to the

NEXT instructions, there MUST be an associated FOR instruction. The FOR-NEXT

instructions must also be programmed in the correct order. This means that programming

a loop as a NEXT-FOR (the paired NEXT instruction proceeds the associated FOR

instruction) is NOT allowed.

Inserting an FEND instruction between the FOR-NEXT instructions, i.e. FOR-FEND-

NEXT, is NOT allowed. This would have the same effect as programming a FOR without a

NEXT instruction, followed by the FEND instruction and a loop with a NEXT and no

associated FOR instruction.

d) A FOR-NEXT loop operates for its set number of times before the main program is

allowed to finish the current program scan.

e) When using FOR-NEXT loops care should be taken not the exceed the PLC‟s

watchdog timer setting. The use of the WDT instruction and/or increasing the watchdog

timer value is recommended.

102

Nested FOR-NEXT loops:

FOR-NEXT instructions can be nested for 5 levels. This means that 5 FOR-NEXT loops

can be sequentially programmed within each other.

In the example a 3 level nest has been programmed. As each new FOR-NEXT nest level

is encountered the number of times that loop is repeated is increased by the multiplication

of all of the surrounding/previous loops.

For example, loop C operates 4 times. But within this loop there is a nested loop, B. For

every completed cycle of loop C, loop B will be completely executed, i.e. it will loop D0Z

times.

This again applies between loops B and A.

The total number of times that loop A will operate for

ONE scan of the program will equal;

1) The number of loop A operations multiplied by

2) The number of loop B operations multiplied by

3) The number of loop C operations

If values were associated to loops A, B and C, e.g. 7,

6 and 4 respectively, the following number of

operations would take place in ONE program

scan:

Number of loop C operations = 4 times

Number of loop B operations = 24 times (C×B, 4×6)

Number of loop A operations = 168 times (C×B×A, 4×6×7)

Note:

The use of the CJ programming feature, causing the jump to P22 allows the„selection‟ of

which loop will be processed and when, i.e. if X10 was switched ON, loop A would no

longer operate.

103

Applied Instructions:

104

5.2 Move And Compare - Functions 10 to 19

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D1,S3 or for lists/tabled devices D3+0,S+9etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number,

i.e.

positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆- An instruction operating in 16 bit mode, where ���identifies the instruction

mnemonic.

☆☆☆P - A 16 bit mode instruction modified to use pulse (single) operation.

D☆☆☆- An instruction modified to operate in 32 bit operation.

D☆☆☆P - A 32 bit mode instruction modified to use pulse (single) operation.

A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.

An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

105

will have no effect to the value of the operand.

5.2.1 CMP (FNC 10)

Operation:

The data of S1is compared to the data of S2. The

result is indicated by 3 bit devices specified from

the head address entered as D. The bit devices

indicate:

S2is less than S1- bit device D is ON

S2is equal to S1- bit device D+1is ON

S2is greater than S1- bit device D+2is ON

Note: The destination (D) device statuses will be kept even if the CMP instruction

is deactivated. Full algebraic comparisons are used, i.e. -10 is smaller than +2 etc.

5.2.2 ZCP (FNC 11)

Operation:

The operation is the same as the CMP

instruction except a single data value (S3) is

compared against a data range (S1-S2).

S3is less than S1and S2- bit device D is ON

106

S3is equal to or between S1and S2- bit device D+1 is ON S3 is greater than both S1and

S2- bit device D+2is ON

5.2.3 MOV (FNC 12)

Operation:

The contents of the source device (S)

is copied to the destination (D) device

when the control input is active. If the

MOV instruction is not driven, no operation takes place.

Note: This instruction has a special programming technique which allows it to

mimic the operation of newer applied instructions when used with older programming

tools.

5.2.4 SMOV (FNC 13)

Operation 1:

This instruction copies a specified

number of digits from a 4 digit decimal

107

source (S) and places them at a specified location within a destination (D) number

(alsoa4digitdecimal).The existing data in the destination is overwritten.

Key:

m1- The source position of the 1st digit to be moved

m2- The number of source digits to be moved

n- The destination position for the first digit

Note: The selected destination must NOT be smaller than the quantity of source data.

Digit positions are referenced by number: 1= units, 2= tens, 3= hundreds, 4=thousands.

Operation 2:(Applicable units,). This modification of the SMOV operation allows BCD

numbers to be manipulated in exactly the same way as the „normal‟ SMOV manipulates

decimal numbers, i.e. This instruction copies a specified number of digits from a 4 digit

BCD source (S) and places them at a specified location within a destination (D) number

(also a 4 digit BCD number).

To select the BCD mode the SMOV

instruction is coupled with special M coil

M8168 which is driven ON. Please

remember that this is a „mode‟ setting

operation and will be active, i.e. all SMOV

instructions will operate in BCD format until

the mode is reset, i.e. M8168 is forced OFF.

5.2.5 CML (FNC 14)

Operation:

A copy of each data bit within the source

device (S) is inverted and then moved to

a designated destination (D).

This means each occurrence of a„1‟ in the source data will become a „0‟ in the destination

data while each source digit which is„0‟ will become a„1‟. If the destination area is smaller

108

than the source data then only the directly mapping bit devices will be processed.

5.2.6 BMOV (FNC 15)

Operation:

A quantity of consecutively occurring

data elements can be copied to a

new destination. The source data is

identified as a device head address

(S) and a quantity of consecutive data elements (n). This is moved to the destination

device

(D) for the same number of elements (n).

Points to note:

a) If the quantity of source devices (n) exceeds the actual number of available source

devices, then only those devices which fall in the available range will be used.

b) If the number of source devices exceeds the available space at the destination location,

then only the available destination devices will be written to.

c) The BMOV instruction has a built in automatic feature to prevent overwriting errors from

occurring when the source (S - n) and destination (D -n) data ranges coincide. This is

clearly identified in the following diagram:

(Note: The numbered arrows indicate the order in which the BMOV is processed)

109

d) Using file registers as the destination devices [D]may be performed on all units.

5.2.7 FMOV (FNC 16)

Operation:

The data stored in the source

device (S) is copied to every device

within the destination range. The range is specified by a device head address (D) and a

quantity of consecutive elements (n). If the specified number of destination devices (n)

exceeds the available space at the destination location, then only the available destination

devices will be written to.

Note: This instruction has a special programming technique which allows it to

mimic the operation of newer applied instructions when used with older programming

tools.

5.2.8 XCH (FNC 17)

Operation 1:The contents of the two destination devices D1and D2are swapped, i.e. the

complete word devices are exchanged. Ex.

110

Operation 2:This function is equivalent to FNC 147 SWAP The bytes within each word of

the designated devices D1are exchanged when „byte mode flag‟M8160 is ON. Please

note that the mode will remain active until it is reset, i.e. M8160 is forced OFF. Ex.

5.2.9 BCD (FNC18)

Operation: (Applicable to all units)

The binary source data (S) is

converted into an equivalent BCD

number and stored at the destination

device (D). If the converted BCD

number exceeds the operational

ranges of 0 to 9,999 (16 bit operation)

and 0 to 99,999,999 (32 bit operation)

an error will occur. This instruction

can be used to output data directly to

a seven segment display.

111

5.2.10 BIN (FNC 19)

Operation: (Applicable to all units)

The BCD source data (S) is

converted into an equivalent binary

number and stored at the

destination device (D). If the source data is not provided in a BCD format an error will

occur. This instruction can be used to read in data directly from thumbwheel switches.

112

Applied Instructions:

113

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D1,S3or for lists/tabled devices D3+0,S+9etc. MSB - Most Significant

Bit, sometimes used to indicate the mathematical sign of a number, i.e.

positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆- An instruction operating in 16 bit mode, where ���identifies the instruction

mnemonic.

☆☆☆P - A 16 bit mode instruction modified to use pulse (single) operation.

D☆☆☆- An instruction modified to operate in 32 bit operation.

D☆☆☆P - A 32 bit mode instruction modified to use pulse (single) operation

A repetitive instruction which will change the destination value on every scan

unless modified by the pulse function.

An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

will have no effect to the value of the operand.

114

5.3.1 ADD (FNC 20)

Operation: (Applicable to all units)

The data contained within the

source devices (S1,S2) is

combined and the total is stored at

the specified destination device (D).

Points to note:

a) All calculations are algebraically processed, i.e. 5 + (-8)= -3.

b) The same device may be used as a source (S1or S2) and as the destination (D). If this

is the case then the ADD instruction would actually operate continuously. This means on

every scan the instruction would add the result of the last scan to the second source

device.

To prevent this from happening the pulse modifier should be used or an interlock should

be programmed.

c) If the result of a calculation is“0" then a special auxiliary flag, M8020 is set ON.

d) If the result of an operation exceeds 32,767 (16 bit limit) or 2,147,483,647 (32 bit limit)

the carry flag, M8022 is set ON. If the result of an operation exceeds -32,768 or

-2,147,483,648 the borrow flag, M8021 is set ON. When a result exceeds either of the

number limits, the appropriate flag is set ON (M8021 or M8022) and a portion of the

carry/borrow is stored in the destination device. The mathematical sign of this stored data

is reflective of the number limit which has been exceeded, i.e. when -32,768 is exceeded

negative numbers are stored in the destination device but if 32,767 was exceeded positive

numbers would be stored at D.

e) If the destination location is smaller than the obtained result, then only the portion of the

result which directly maps to the destination area will be written, i.e if 25 (decimal) was the

result, and it was to be stored at K1Y4 then only Y4 and Y7 would be active. In binary

terms this is equivalent to a decimal value of 9 a long way short of the real result of 25!

115

5.3.2 SUB (FNC 21)

Operation: (Applicable to all units)

The data contained within the

source device, S2is subtracted

from the contents of source device

S1. The result or remainder of this

calculation is stored in the destination device D.

Note: the „Points to note‟, under the ADD instruction (previous page) can also be similarly

applied to the subtract instruction.

5.3.3 MUL (FNC 22)

Operation:(Applicable to all units)

The contents of the two source

devices (S1, S2) are multiplied

together and the result is stored at

the destination device (D). Note the

normal rules of algebra apply.

116

Points to note:

a) When operating the MUL instruction in 16bit mode, two 16 bit data sources are

multiplied together. They produce a 32 bit result. The device identified as the destination

address is the lower of the two devices used to store the 32 bit result. Using the above

example with some test data:

5(D0)×7 (D2) = 35 - The value 35 is stored in (D4, D5) as a single 32 bit word.

b) When operating the MUL instruction in 32 bit mode, two 32 bit data sources are

multiplied together. They produce a 64 bit result. The device identified as the destination

address is the lower of the four devices used to store the 64 bit result.

c) If the location of the destination device is smaller than the obtained result, then only the

portion of the result which directly maps to the destination area will be written, i.e if a result

of 72 (decimal) is to be stored at K1Y4 then only Y7 would be active. In binary terms this is

equivalent to a decimal value of 8, a long way short of the real result of 72!

Viewing 64 bit numbers

• It is currently impossible to monitor the contents of a 64 bit result. However, the result

can be monitored in two smaller,32 bit, blocks, i.e. a 64 bit result is made up of the

following parts: (upper 32 bits)× 2 32 +(lower32bits).

 5.3.4 DIV (FNC 23)

Operation:(Applicable to all units)

The primary source (S1) is divided

by the secondary source (S2).

The result is stored in the

destination (D). Note the normal

rules of algebra apply.

117

Points to note:

a) When operating the DIV instruction in 16bit mode, two 16 bit data sources are divided

into each other. They produce two 16 bit results. The device identified as the destination

address is the lower of the two devices used to store the these results.

This storage device will actually contain a record of the number of whole times S2will

divide into S1(the quotient).

The second, following destination register contains the remained left after the last whole

division (the remainder). Using the previous example with some test data:

51 (D0)÷10 (D2) = 5(D4) 1(D5)

This result is interpreted as 5 whole divisions with 1 left over (5×10+1=51).

b) When operating the DIV instruction in 32 bit mode, two 32 bit data sources are divided

into each other. They produce two 32 bit results. The device identified as the destination

address is the lower of the two devices used to store the quotient and the following two

devices are used to store the remainder, i.e. if D30 was selected as the destination of 32

bit division operation then D30, D31 would store the quotient and D32, D33 would store

the remainder. If the location of the destination device is smaller than the obtained result,

then only the portion of the result which directly maps to the destination area will be

written. If bit devices are used as the destination area, no remainder value is calculated.

c) If the value of the source device S2is 0 (zero) then an operation error is executed and

the operation of the DIV instruction is cancelled.

5.3.5 INC (FNC 24)

Operation:

On every execution of the

instruction the device specified as

the destination D, has its current

value incremented (increased) by a value of 1.

In 16 bit operation, when +32,767 is reached, the next increment will write a value of

-32,768 to the destination device.

118

In 32 bit operation, when +2,147,483,647 is reached the next increment will write a value

of -2,147,483,648 to the destination device. In both cases there is no additional flag to

identify this change in the counted value.

5.3.6 DEC (FNC 24)

Operation:

On every execution of the

instruction the device specified as

the destination D, has its current

value decremented (decreased) by a value of 1.

In 16 bit operation, when -32,768 is reached the next increment will write a value of

+32,767 to the destination device.

In 32 bit operation, when -2,147,483,648 is reached the next increment will write a value

of +2,147,483,647 to the destination device. In both cases there is no additional flag to

identify this change in the counted value.

5.3.7 WAND (FNC 26)

Operation:

The bit patterns of the two source

devices are analyzed (the contents

119

of S2is compared against the contents of S1). The result of the logical AND analysis is

stored in the destination device (D).

The following rules are used to determine the result of a logical AND operation. This takes

place for every bit contained within the source devices: General rule: (S1) Bit n WAND

(S2)Bitn=(D)Bitn

1 WAND 1 = 1 0 WAND 1 = 0

1 WAND 0 = 0 0 WAND 0 = 0

5.3.8 WOR (FNC 27)

Operation:

The bit patterns of the two source

devices are analyzed (the contents

of S2is compared against the

contents of S1). The result of the

logical OR analysis is stored in the destination device (D).

The following rules are used to determine the result of a logical OR operation. This takes

place for every bit contained within the source devices: General rule:

(S1)BitnWOR(S2)Bitn=(D)Bitn

1WOR1=1 0WOR1=1

1WOR0=1 0WOR0=0

120

5.3.9 WXOR (FNC 28)

Operation:

The bit patterns of the two source

devices are analyzed (the

contents of S2is compared

against the contents of S1). The

result of the logical XOR analysis is stored in the destination device (D).

The following rules are used to determine the result of a logical XOR operation. This takes

place for every bit contained within the source devices: General rule: (S1)Bit nWXOR

(S2)Bitn= (D)Bitn

1WXOR1=0 0WXOR1=1

1WXOR0=1 0WXOR0=0

5.3.10 NEG (FNC 29)

Operation:

The bit pattern of the selected

device is inverted.

This means any occurrence of a„1‟

becomes a„0‟ and any occurrence of a„0‟ will be written as a„1‟.

When this is complete, a further binary 1 is added to the bit pattern. The result is the total

logical sign change of the selected devices contents, e.g. a positive number will become a

negative number or a negative number will become a positive.

121

Applied Instructions:

122

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D1,S3or for lists/tabled devices D3+0,S+9etc. MSB - Most Significant

Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and

negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆- An instruction operating in 16 bit mode, where ���identifies the instruction

mnemonic.

☆☆☆P - A 16 bit mode instruction modified to use pulse (single) operation.

D☆☆☆- An instruction modified to operate in 32 bit operation.

D☆☆☆P - A 32 bit mode instruction modified to use pulse (single) operation

A repetitive instruction which will change the destination value on every scan

unless modified by the pulse function.

 An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

will have no effect to the value of the operand.

5.4.1 ROR (FNC 30)

123

Operation:

The bit pattern of the destination device

(D) is rotated n bit places to the right on

every operation of the instruction.

The status of the last bit rotated is

copied to the carry flag M8022.

The example shown left is based on the

instruction noted above it, where the bit

pattern represents the contents of D0.

5.4.2 ROL (FNC 31)

Operation:

The bit pattern of the destination

device (D) is rotated n bit places to

the left on every operation of the

instruction.

The status of the last bit rotated is

copied to the carry flag M8022.

The example shown left is based on

the instruction noted above it, where

the bit pattern represents the

contents of D0.

124

5.4.3 RCR (FNC 32)

Operation:

The bit pattern of the destination device

(D)is rotated n bit places to the right on

every operation of the instruction.

The status of the last bit rotated is

moved into the carry flag M8022. On the

following operation of the instruction

M8022 is the first bit to be moved back

into the destination device.

The example shown left is based on the

instruction noted above it, where the bit pattern represents the contents of D0.

5.4.4 RCL (FNC 33)

125

Operation:

The bit pattern of the destination

device (D)is rotated n bit places to

the left on every operation of the

instruction.

The status of the last bit rotated is

moved into the carry flag M8022.

On the following operation of the

instruction M8022 is the first bit to

be moved back into the destination

device.

The example shown left is based

on the instruction noted above it, where the bit pattern represents the contents of D0.

5.4.5 SFTR (FNC 34)

Operation:

The instruction copies n2source

devices to a bit stack of length n1.

For every new addition of n2bits, the

existing data within the bit stack is

shifted n2bits to the right. Any bit

data moving to a position exceeding

the n1limit is diverted to an overflow area. The bit shifting operation will occur every time

the instruction is processed unless it is modified with either the pulse suffix or a controlled

interlock.

126

5.4.6 SFTL (FNC 35)

Operation:

The instruction copies n2source

devices to a bit stack of length n1.

For every new addition of n2bits, the

existing data within the bit stack is

shifted n2bits to the left. Any bit data

moving to a position exceeding the

n1limit is diverted to an overflow

area.

The bit shifting operation will occur every time the instruction is processed unless it is

modified with either the pulse suffix or a controlled interlock.

5.4.7 WSFR (FNC 36)

127

Operation:

The instruction copies n2source

devices to a word stack of length n1.

For each addition of n2words, the

existing data within the word stack is

shifted n2words

To the right. Any word data moving to

a position exceeding the n1limit is

diverted to an overflow area.

The word shifting operation will occur every time the instruction is processed unless it is

modified with either the pulse suffix or a controlled interlock.

Note: when using bit devices as source (S) and destination (D) the Kn value must be

equal.

5.4.8 WSFL (FNC 37)

Operation:

The instruction copies n2source

devices to a word stack of length n1.

For each addition of n2words, the

existing data within the word stack

is shifted n2words to the left. Any

word data moving to a position

exceeding the n1limit is diverted to

an overflow area.

The word shifting operation will

occur every time the instruction is processed unless it is modified with either the pulse

suffix or a controlled interlock.

Note: when using bit devices as source (S) and destination (D) the Kn value must be

equal.

128

5.4.9 SFWR (FNC 38)

Operation:

The contents of the source device

(S) are written to the FIFO stack.

The position of insertion into the

stack is automatically calculated by

the PLC.

The destination device (D) is the

head address of the FIFO stack.

The contents of D identify where the next record will be stored (as an offset from D+1).

If the contents of D exceed the value “n-1”(n is the length of the FIFO stack) then insertion

into the FIFO stack is stopped. The carry flag M8022 is turned ON to identify this situation.

Points to note:

a) FIFO is an abbreviation for „First-In/ First-OUT‟.

b) Although n devices are assigned for the FIFO stack, only n-1 pieces of information may

be written to that stack. This is because the head address device (D) takes the first

available register to store the information regarding the next data insertion point into the

FIFO stack.

c) Before starting to use a FIFO stack ensure that the contents of the head address

register

(D) are equal to„0‟ (zero).

d) This instruction should be used in conjunction with SFRD FNC 39. The n parameter in

both instructions should be equal.

129

5.4.10 SFRD (FNC 39)

Operation:

The source device (S) identifies

the head address of the FIFO

stack. Its contents reflect the last

entry point of data on to the FIFO

stack, i.e. where the end of the

FIFO is (current position).

This instruction reads the first

piece of data from the FIFO stack

(register S+1), moves all of the data within the stack „up‟ one position to fill the read area

and decrements the contents of the FIFO head address (S) by 1. The read data is written

to the destination device (D).

When the contents of the source device (S) are equal to„0‟ (zero), i.e. the FIFO stack is

empty, the flag M8020 is turned ON.

Points to note:

a) FIFO is an abbreviation for „First-In/ First-OUT‟.

b) Only n-1pieces of data may be read from a FIFO stack. This is because the stack

requires that the first register, the head address (S) is used to contain information about

the current length of the FIFO stack.

c) This instruction will always read the source data from the register S+1.

d) This instruction should be used in conjunction with SFWR FNC 38. The n parameter in

both instructions should be equal.

130

Applied Instructions:

131

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D1,S3or for lists/tabled devices D3+0,S+9etc. MSB - Most Significant

Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and

negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆- An instruction operating in 16 bit mode, where ���identifies the instruction

mnemonic.

☆☆☆P - A 16 bit mode instruction modified to use pulse (single) operation.

D☆☆☆- An instruction modified to operate in 32 bit operation.

D☆☆☆P - A 32 bit mode instruction modified to use pulse (single) operation.

 A repetitive instruction which will change the destination value on every scan

unless modified by the pulse function.

An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

will have no effect to the value of the operand.

5.5.1 ZRST (FNC 40)

Operation:

The range of devices, inclusive of

those specified as the two

destinations are reset, i.e. for data

devices the current value is set to 0 (zero) and for bit elements, the devices are turned

OFF,i.e.alsosetto0(zero).

132

The specified device range cannot contain mixed device types, i.e. C000 specified as the

first destination device (D1) cannot be paired with T199 as the second destination device

(D2). When resetting counters, standard and high speed counters cannot be reset as part

of the same range.

If D1is greater than (>) D2then only device D1is reset.

5.5.2 DECO (FNC 41)

Operation:

Source data is provided by a

combination of operands S and n.

Where S specifies the head address

of the data and n, the number of

consecutive bits. The source data is

read as a single number (binary to

decimal conversion) Q. The source

number Q is the location of a bit within

the destination device (D) which will

be turned ON (see example opposite).

When the destination device is a data

device n must be within therange1to4asthereareonly16available destination bits in a

single data word. All unused data bits within the word are set to 0.

133

5.5.3 ENCO (FNC 42)

Operation:

The highest active bit within the readable range

has its location noted as a numbered offset from

the source head address (S). This is stored in

the destination register (D).

Points to note:

a) The readable range is defined by the largest number storable in a binary format within

the number of destination storage bits specified by n, i.e. if n was equal to 4 bits a

maximum number within the range 0 to 15 can be written to the destination device. Hence,

if bit devices were being used as the source data, 16 bit devices would be used, i.e. the

head bit device and 15 further, consecutive devices.

b) If the stored destination number is 0 (zero) then the source head address bit is ON, i.e.

the active bit has a 0 (zero) offset from the head address. However, if NO bits are ON

within the source area, 0 (zero) is written to the destination device and an error is

generated.

c) When the source device is a data or word device n must be taken from the range

1to4as there are only 16 source bits available within a single data word.

134

5.5.4 SUM (FNC 43)

Operation:

The number of active (ON) bits within the

source device (S), i.e. bits which have a

value of“1" are counted. The count is stored

in the destination register (D). If a double

word format is used, both the source and

destination devices use 32 bit, double

registers. The destination device will

always have its upper 16 bits set to 0 (zero)

as the counted value can never be more than 32. If no bits are ON then zero flag, M8020

is set.

5.5.5 BON (FNC 44)

135

Operation:

A single bit position (n) is specified from

within a source device/area (S). n could be

regarded as a specified offset from the

source head address (S), i.e. 0 (zero) being

the first device (a 0 offset) where as an

offset of 15 would actually be the 16th

device.

If the identified bit becomes active, i.e. ON,

the destination device (D) is activated to “flag” the new status.

The destination device could be said to act as a mirror to the status of the selected bit

source.

5.5.6 MEAN (FNC 45)

Operation:

The range of source data is defined by

operands S and n. S is the head

address of the source data and n

specifies the number of consecutive

source devices used.

The value of all the devices within the

source range is summed and then

divided by the number of devices

summed, i.e. n. This generates an

integer mean value which is stored in

the destination device (D). The

remainder of the calculated mean is ignored.

136

Points to note:

If the source area specified is actually smaller than the physically available area, then only

the available devices are used. The actual value of n used to calculate the mean will

reflect the used, available devices. However, the value for n which was entered into the

instruction will still be displayed. This can cause confusion as the mean value calculated

manually using this original n value will be different from that which is displayed.

If the value of n is specified outside of the stated range (1 to 64) an error is generated.

5.5.7 ANS (FNC 46)

Operation:

This instruction, when energized,

starts a timer (S) for n,100 msec.

When the timer completes its

cycle the assigned annunciator

(D) is set ON.

If the instruction is switched OFF during or after completion of the timing cycle the timer is

automatically reset. However, the current status of the annunciator coil remains

unchanged.

Note:This is only one method of driving annunciator coils, others such as direct

setting can also be used.

137

5.5.8 ANR (FNC 47)

Operation:

Annunciators which have been

activated are sequentially reset

one-by-one, each time the ANR

instruction is operated.

If the ANR instruction is driven continuously it will carry out its resetting operation on every

program scan unless it is modified by the pulse, P prefix or by a user defined program

interlock.

5.5.9 SQR (FNC 48)

Operation 1:

This instruction performs a square root

operation on source data (S) and stores

the result at destination device (D). The

operation is conducted entirely in whole

integers rendering the square root

answer rounded to the lowest whole

number. For example, if (S) = 154, then

138

(D) is calculated as being 12. M8020 is set ON when the square root operation result is

equal to zero. Answers with rounded values will activate M8021.

Operation 2: This function is equivalent to FNC 127 ESQR This operation is similar to

Operation 1. However, it is only activated when the mode setting float flag, M8023 is used.

This then allows the SQR instruction to process answers in floating point format. The

source data (S) must either be supplied in floating point format for data register use, or it

can be supplied as a constant (K,H). When constants are used as a source, they are

automatically converted to floating point format. Operation 2 is only valid for double word

(32 bit) operation,

hence both (S) and (D) will be 32 bit values and the SQR instruction will be entered as

DSQR or DSQRP.

General note:

Performing any square root operation (even on a calculator) on a negative number will

result in an error. This will be identified by special M coil M8067 being activated:

 = Error and M8067 will be set ON This is true for both operating modes.

5.5.10 FLT (FNC 49)

Operation:

When the float instruction is used without

the float flag (M8023 = OFF) the source

data (S) is converted in to an equivalent

value stored in float format at the

destination device (D).

Please note that two consecutive

devices (D and

D+1) will be used to store the converted

float number. This is true regardless of

the size of the source data (S), i.e. whether (S) is a single device (16 bits) or a double

device (32 bits) has no effect on the number of destination devices (D) used to store the

floating point number. Examples:

139

Applied Instructions:

140

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D1,S3or for lists/tabled devices D3+0,S+9etc. MSB - Most Significant

Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and

negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆- An instruction operating in 16 bit mode, where ���identifies the instruction

mnemonic.

☆☆☆P - A 16 bit mode instruction modified to use pulse (single) operation.

D☆☆☆- An instruction modified to operate in 32 bit operation.

D☆☆☆P - A 32 bit mode instruction modified to use pulse (single) operation.

A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.

An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

141

will have no effect to the value of the operand.

5.6.1 REF (FNC 50)

Operation:

Standard PLC operation processes

output and input status between the

END instruction of one program scan

and step 0 of the following program scan. If an immediate update of the I/O device status

is required the REF instruction is used. The REF instruction can only be used to update or

refresh blocks of 8 (n) consecutive devices. The head address of the refreshed devices

should always have its last digit as a 0 (zero), i.e. in units of 10.

Note: A short delay will occur before the I/O device is physically updated, in the case

of inputs a time equivalent to the filter setting, while outputs will delay for their set

energized time.

5.6.2 REFF (FNC 51)

Operation:

PLC‟s are provided with input filters to

overcome problems generated by

142

mechanical switch gear.

However, as this involves ensuring a steady input signal is received for a fixed time

duration, the use of input filters slows down the PLC response times. For high speed

applications, especially where solid state switching provides the input signal, input filter

times may be reduced. The default setting for the input filters is approximately 10 msec.

Using this instruction input filter times of 0 to 60 msec may be selected. The setting „0‟

(zero) is actually 50µsec. This is the minimum available setting. It is automatically

selected when direct input, interrupts or high speed counting functions are used. The

REFF instruction needs to be driven for each program scan if it is to be effective,

otherwise, the standard 10 msec filter time is used.

5.6.3 MTR (FNC 52)

Operation:

This instruction allows a

selection of 8 consecutive input

devices (head address S) to be

used multiple (n) times, i.e. each

physical input has more than one,

separate and quite different (D1) signal being processed. The result is stored in a

matrix-table (head address D2).

Points to note:

a) The MTR instruction involves high speed input/output switching. For this reason this

instruction is only recommended for use with transistor output modules.

b) For the MTR instruction to operate correctly, it must be driven continuously. It is

recommended that special auxiliary relay M8000, the PLC RUN status flag, is used. After

the completion of the first full reading of the matrix, operation complete flag M8029 is

turned ON. This flag is automatically reset when the MTR instruction is turned OFF.

c) Each set of 8 input signals are grouped into a „bank‟ (there are n number of banks).

d) Each bank is triggered/selected by a dedicated output (head address D1). This means

the quantity of outputs from D1 , used to achieve the matrix are equal to the number of

143

banks n. As there are now additional inputs entering the PLC these will each have a status

which needs recording. This is stored in a matrix-table. The matrix-table starts at the head

address D 2 . The matrix construction mimics the same 8 signal by n bank configuration.

Hence, when a certain input in a selected bank is read, its status is stored in an equivalent

position within the result matrix-table.

e) The matrix instruction operates on an interrupt format, processing each bank of inputs

every 20msec. This time is based on the selected input filters being set at 10msec. This

would result in an 8 bank matrix, i.e. 64 inputs (8 inputs´ 8 banks) being read in 160msec.

If high speed inputs (ex. X0) is

specified for operand S, the reading time

of each bank becomes only 10msec, i.e.

a halving of the reading speed. However,

additional pull down resistors are

required on the drive outputs to ensure

the high speed reading does not detect

any residual currents from the last

operation. These should be placed in parallel to the

input bank and should be of a value of

approximately .3k Ω, 0.5W. For easier use, high

speed inputs should not be specified at S.

f) Because this instruction uses a series of

multiplexed signals it requires a certain amount of

‘ hard wiring ‟ to operate. The example wiring

diagram to the right depicts the circuit used if the

previous example instruction was programmed. As a

general precaution to aid successful operation diodes

should be places after each input device (see

diagram opposite). These should have a rating of

144

0.1A, 50V.

g) Example Operation

When output Y20 is ON only those inputs in the first bank are read. These results are then

stored; in this example, auxiliary coils M30 to M37. The second step involves Y20 going

OFF and Y21 coming ON. This time only inputs in the second bank are read. These

results are stored in devices M40 to M47. The last step of this example has Y21 going

OFF and Y22 coming ON. This then allows all of the inputs in the third bank to be read

and stored in devices M50 to M57. The processing of this instruction example would take

20 × 3 = 60msec.

Notice how the resulting matrix-table does not use any of the ☆ 8 and☆ 9 bit

devices when state S or auxiliary M relays are used as the storage medium.

5.6.4 HSCS (FNC 53)

Operation:

The HSCS set, compares the current

value of the selected high speed

counter (S 2)against a selected value

(S1). When the counters current value changes to a value equal to S1 the device

specified as the destination (D)is set ON. The example above shows that Y10 would be

set ON only when C255‟s value stepped from 99-100 OR 101-100. If the counters current

value was forced to equal 100, output Y10 would NOTbe set ON.

Points to note:

a) It is recommended that the drive input used for the high speed counter functions; HSCS,

HSCR, HSCZ is the special auxiliary RUN contact M8000.

b) If more than one high speed counter function is used for a single counter the selected

flag devices (D) should be kept within 1 group of 8 devices, i.e. Y0-7, M10-17.

c) All high speed counter functions use an interrupt process, hence, all destination devices

145

(D) are updated immediately.

Note:

For all units Max. 6 simultaneously active HSCS/R and HSZ instructions. Please

remember that the use of high speed counter functions has a direct impact on the

maximum allowable counting speed!

Use of interrupt pointers

 MPUs can use interrupt pointers I010 through I060 (6 points) as destination devices (D).

This enables interrupt routines to be triggered directly when the value of the specified high

speed counter reaches the value in the HSCS instruction.

5.6.5 HSCR (FNC 54)

Operation:

The HSCR, compares the current

value of the selected high speed

counter (S2)againsta selected

value (S1). When the counters

current value changes to a value

equal to S 1 , the device specified as the destination (D) is reset. In the example above,

Y10 would be reset only when C255‟s value stepped from 199 to 200 or from 201 to 200.

If the current value of C255 was forced to equal 200 by test techniques, output Y10 would

NOTreset. For further, general points, about using high speed counter functions, please

see the subsection „Points to note‟ under the HSCS (FNC 53). Relevant points are; a, b,

and c. Please also reference the note about the number of high speed instructions

allowable.

146

5.6.6 HSZ (FNC 55)

Operation 1 -

Standard:(Applicable to all units)

This instruction works in exactly

the same way as the standard

ZCP (FNC11). The only difference is that the device being compared is a high speed

counter (specified as S3). Also, all of the outputs (D) are updated immediately due to the

interrupt operation of the DHSZ. It should be remembered that when a device is specified

in operand D it is in fact a head address for 3 consecutive devices. Each one is used to

represent the status of the current comparison, i.e. using the above example as a basis,

Y10 (D) C251 is less than S1, K1000 (S3 <S1)

Y11 (D+1) C251 is greater than S1, K1000 but less than S 2, K1200 (S3 >S1 ,S3 <S2)

Y12 (D+2) C251 is greater than S2, K1200 (S3 >S2)

For further, general points, about using high speed counter functions please see

the subsection „Points to note‟ under the HSCS (FNC 52). Relevant points are; a, b, and c.

Please also reference the note about the number of high speed instructions allowable.

Operation 2 - Using HSZ With A Data Table: (Applicable units:) Operation 2 is selected

when the destination device (D) is assigned special M coil M8130. This then allows

devices (S1 ,S2)to be used to define a data table using (S1) as the head address and

147

(S2) as the number of records in the table - maximum number of records is 128. Each

record occupies 4 consecutive data registers proportioned in the following manner (for a

single record of data registers D through D +3).

The following points should be read while studying the example on the right of the page.

Please note, all normal rules associated with

high speed counters still apply.

The data table is processed one„ record

number ‟ at a time, i.e only 1 record is ever

active as the comparison data. The currently

active record number is stored in data register

D8130. As the comparison value for the active

record is „ reached ‟ , the assigned „ Y ‟ device

is SET or RESET and the active „Record

number ‟ is incremented by 1. Once all

records in a data table have been processed, the current record pointer (D8130) is reset

to 0 (the table is then ready to process again) and the operation complete flag M8131 is

set ON.

If the high speed counter is reset (by program or hardware input), when it resumes

counting and reaches the first record‟s comparison value, the M8131 flag will be reset.

Both the status of M8131 and contents of

D8130 are not editable by the user. If the

DHSZ instruction is turned OFF then all

associated flags are reset. Care should be

exercised when resetting the high speed

counter or turning OFF the DHSZ instruct as

all associated „Y ‟ output devices will remain in

their last state, i.e. if an output was ON it will

148

remain ON until independently reset by the user. The data within in active records can be

changed during operation allowing data tables to be updated. Any change made is

processed at the end of the current program scan. The HSZ instruction will continue to

process only the active data record, i.e. it will not reset due to the updating of an inactive

data record.

When the DHSZ instruction is initially activated it will not process a comparison until the

following program scan as the CPU requires a slight time delay to initialize the comparison

table.

Operation 3 - Combined HSZ and PLSY Operation:(Applicable units:)

Operation 3 allows the HSZ and PLSY instructions to be used together as a control loop.

This operation is selected when the destination device (D) is assigned special M coil

M8132. This then allows devices (S1 ,S2)to be used to define a data table using(S1) as

the head address and (S2) as the number of records in the table - maximum number of

records is 128. Each record occupies 4 consecutive data registers (D through D +3)

proportioned in to two 32 bit data areas.

The first pair of data registers (D,D+1) contain the

comparison value for use with the high speed

counter. The second pair of data registers (D

+2,D+3) contain a value (from 0 to 1000) which

represents an output frequency in Hz. This value

is loaded in to special data register D8132 when

the comparison made by the DHSZ instruction

gives a „ TRUE ‟ output. Special data register

D8132 can be used as the source data for a PLSY (FNC57) output enabling the output to

be varied with relative count data.

As with Operation 2 only one record in the data table is

active at anyone time. The current ‘ Record number‟ being

processed is stored in data register D8131. To observe the

current comparative value, data registers D8134 and D8135

should be monitored as a double word (32 bit) device.

Once the final entry in the data table has been processed,

the operation complete flag M8133 is set ON and the record

counter (D8131) cycles back to the first record. It is

recommended that if the high speed counter and PLSY

149

operations form a closed loop that the last record entry in the data table is set to K0 for the

comparison value and K0 for the PLSY output frequency. This will bring the controlled

system to a stop and the „ Record number ‟ counter will not be able to cycle back to the

start of the data table until the associated high speed counter is reset by either pro-gram

or hardware methods. This situation can be easily monitored by checking the paired data

registers D8134 and D8135 for the„0 ‟ value.

It is recommended that the operation of the PLSY instruction is delayed for 1 scan to allow

the DHSZ data table to be constructed on initial operation. A suggested program using a

pulsed flag is shown in the example on this page.

5.6.7 SPD (FNC 56)

Operation:

The number of pulses received at S1 are

counted and stored in D+1; this is the current

count value. The counting takes place over a set

time frame specified by S2 in msec. The time

remaining on the current „ timed count ‟ , is

displayed in device D +2. The number of counted

pulses (of S 1)fromthelast timed count are

stored in D. The timing chart opposite shows the

SPD operation in a graphical sense.

 Note: ①: Current count value, device D +1

 ② : Accumulated/ last count value, device D

 ③: Current time remaining in msec, device D+2

Points to note:

150

a) When the timed count frame is completed the data stored in D +1is immediately written

to D. D +1is then reset and a new time frame is started.

b) Because this is both a high speed and an interrupt process only inputs X0 to X5 may be

used as the source device S 1 . However, the specified device for S1 mustNOTcoincide

with any other high speed function which is operating, i.e. a high speed counter using the

same input. The SPD instruction is considered to act as a single phase counter.

c) Multiple SPD instructions may be used, but the identified source devices S1 restrict this

to a maximum of 6 times.

d) Once values for timed counts have been collected, appropriate speeds can be

calculated using simple mathematics. These speeds could be radial speeds in rpm, linear

speeds in M/ min it is entirely down to the mathematical manipulation placed on the SPD

results. The following interpretations could be used;

where n = the number of linear encoder divisions per kilometer.

where n = the number of encoder pulses per revolution of the encoder disk.

5.6.8 PLSY (FNC 57)

Operation:

A specified quantity of pulses S2 is

output through device D at a

specified frequency S1 .This

instruction is used in situations

where the quantity of outputs is of primary concern.

Points to note:

a) HCA2 users may use frequencies of 1 to 132,767Hz (16-bit operation) and 1 to 100kHz

(32-bit operation). users may use frequencies of 2 to 20kHz.

b) The maximum number of pulses: 16 bit operation: 1 to 32,767 pulses, 32 bit operation:

1 to 2,147,483,647 pulses.

Note: special auxiliary coil M8029 is turned ON when the specified number of pulses has

151

been completed. The pulse count and completion flag (M8029) are reset when the PLSY

instruction is de-energized. If “ 0" (zero) is specified the PLSY instruction will continue

generating pulses for as long as the instruction is energized.

c) A single pulse is described as having a 50% duty cycle. This means it is ON for 50% of

the pulse and consequently OFF for the remaining 50% of the pulse. The actual output is

controlled by interrupt handling, i.e. the output cycle is NOT affected by the scan time of

the program.

d) The data in operands S 1 and S 2 may be changed during execution. However, the new

data in S 2 will not become effective until the current operation has been completed, i.e.

the instruction has been reset by removal of the drive contact.

e) Two FNC 57 (PLSY) can be used at the same time in a program to output pulses to

Y000 and Y001 respectively. Or, only one FNC 57 PLSY and one FNC 59 PLSR can be

used together in the active program at once, again outputting independent pulses to Y000

and Y001

.

It is possible to use subroutines or other such programming techniques to isolate

different instances of this instructions. In this case, the current instruction must be

deactivated before changing to the new instance.

f) Because of the nature of the high speed output, transistor output units should be used

with this instruction. Relay outputs will suffer from a greatly reduced life and will cause

false outputs to occur due to the mechanical „bounce‟ of the contacts. To ensure a „ clean‟

output signal when using transistor units, the load current should be 200mA or higher with

the Series. The load current should be 10 - 100mA with the HCA2 Series. It may be

found that „pull up ‟ resistors will be required.

g) units can monitor the number of pulses output to Y0 using devices D8140 and D8141,

and the number of output pulses output to Y1 using devices D8142 and D8143. The total

number of pulses output can be monitored using D8136 and D8137.

5.6.9 PWM (FNC 58)

152

Operation:

A continuous pulse train is output through

device D when this instruction is driven. The

characteristics of the pulse are defined as:

The distance, in time (msec), between two

identical parts of consecutive pulses (S 2).

And how long, also in time (msec), a single

pulse will be active for (S1)

Points to note:

a) Because this is a 16 bit instruction, the available time ranges for S 1 and S 2 are 1 to

32,767.

b) A calculation of the duty cycle is easily made by dividing S1 by S2 . Hence S 1 cannot

have a value greater than S 2 as this would mean the pulse is on for longer than the

distance between two pulses, i.e. a second pulse would start before the first had finished.

If this is programmed an error will occur. This instruction is used where the length of the

pulse is the primary concern.

c) The PWM instruction may only be used once in a users program.

d) Because of the nature of the high speed output, transistor output units should be used

with this instruction. Relay outputs will suffer from a greatly reduced life and will cause

false outputs to occur due to the mechanical „bounce‟ of the contacts. To ensure a „ clean‟

output signal when using transistor units, the load current should be 200mA or higher with

the Series. The load current should be 10 - 100mA with the HCA2 Series. It may be

found that „ pull up ‟ resistors will be required.

5.6.10 PLSR (FNC 59)

Operation:

A specified quantity of pulses S 2 is

output through device D. The output

frequency is first ramped up in 10 steps

to the maximum frequency S1 in

153

acceleration time S 3 ms, then ramped down to stop also in S3 ms. This instruction is

used to generate simple acc/dec curves where the quantity of outputs is of primary

concern.

Points to Note:

a) users may use frequencies of 10 to 20,000Hz. / HCA2 users may use frequencies

of 10 to 100,000Hz. The frequency should be set to a multiple of 10. If not it will be

rounded up to the next multiple of 10. The acceleration and deceleration steps are set to

1/10 of the maximum frequency. Take this in to consideration to prevent slipping, when

using stepping motors.

b) units with CPU of less than V3.00 and all / HCA2 units, maximum number of pulses:

16 bit operation: 110 to 32,767 pulses, 32 bit operation: 110 to 2,147,483,647 pulses.

Correct pulse output can not be guaranteed for a setting of 110 or less. units with CPU

of V3.00 or greater, maximum number of pulses: 16 bit operation: 0 to 32,767 pulses, 32

bit operation: 0 to 2,147,483,647 pulses. A setting of 110 pulses or less, or a frequency of

[S 1]/10 will result in no acceleration.

c) The acceleration time must conform to the limitations described below.

d) The output device is limited to Y000 or Y001 only and should be transistor type.

e) Two FNC 59 (PLSR) can be used at the same time in a program to output pulses to

Y000 and Y001 respectively. Or, only one FNC 57 PLSY and one FNC 59 PLSR can be

used together in the active program at once, again outputting independent pulses to Y000

and Y001.

It is possible to use subroutines or other such programming techniques to isolate

different instances of this instructions. In this case, the current instruction must be

deactivated before changing to the new instance.

f) If the number of pulses is not enough to reach the maximum frequency then the

frequency is automatically cut

g) Special auxiliary coil M8029 turns ON when the specified number of pulses has been

completed. The pulse count and completion flag (M8029) are reset when the PLSR

154

instruction is de-energized.

Acceleration time limitations

The acceleration time S3 has a maximum limit of 5000 ms. However, the actual limits of

S3 are determined by other parameters of the system according to the following 4 points.

1) Set S3 to be more than 10 times the maximum program scan time (D8012). If set to

less than this, then the timing of the acceleration steps becomes uneven.

2) The following formula gives the minimum value for S 3 .

3) The following formula gives the maximum value for S 3.

4) The pulse output always increments in 10 step up to the maximum frequency as shown

on the previous page.

If the parameters do not meet the above conditions, reduce the size of S1 .

• Possible output frequency is limited to 2 to 20,000 Hz for ,and10to 100,000Hz

for / HCA2. If either the maximum frequency or the acceleration step size are outside

this limit then they are automatically adjusted to bring the value back to the limit.

• If the drive signal is switch off, all output stops. When driven ON again, the process

starts from the beginning.

• Even if the operands are changed during operation, the output profile does not change.

The new values take effect from the next operation.

155

Applied Instructions:

156

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D 1 ,S3 or for lists/tabled devices D3+0, S +9etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number,

i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆ - An instruction operating in 16 bit mode, where ☆☆☆ identifies the instruction

mnemonic.

☆☆☆P - A 16 bit mode instruction modified to use pulse (single) operation.

D☆☆☆ - An instruction modified to operate in 32 bit operation.

D ☆☆☆P - A 32 bit mode instruction modified to use pulse (single) operation

A repetitive instruction which will change the destination value on every scan unless

157

modified by the pulse function.

An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

will

have no effect to the value of the operand.

5.7.1 IST (FNC 60)

Operation:

This instruction automatically sets up a

multi-mode STL operating system. This

consists of variations of „ manual‟ and

„automatic‟ operation modes.

Points to note:

a) The IST instruction automatically assigns and uses many bit flags and word devices;

these are listed in the boxed column on the right of this page.

b) The IST instruction may only be used ONCE . It should be programmed close to the

beginning of the program, before the controlled STL circuits.

c) The required operation mode is selected by driving the devices associated with

operands S+0 through to S+4 (5 inputs). None of the devices within this range should be

ON at the same time. It is recommended that these ‘ inputs ‟ are selected through use of

a rotary switch. If the currently selected operating mode is changed before the„ zero return

complete ‟ flag (M8043) is set, all outputs will be turned OFF.

d) The „zero position ‟ is a term used to identify a datum position from where the controlled

device, starts from and returns too after it has completed its task. Hence, the operating

mode „ zero return‟ , causes the controlled system to return to this datum.

Assigned devices

Indirect user selected devices:

S +0Manual operation

S +1Zero return

S +2Step operation

158

S +3One cycle operation

S +4Cyclic operation

S +5Zero return start

S +6Automatic operation start

S +7Stop

Initial states:

S0 initiates „manual‟ operation

S1 initiates „zero return ‟ operation

S2 initiates „automatic‟ operation

General states:

S10toS19 „zero return ‟ sequence

D 1 to D 2 „automatic return‟ sequence

Special bit flags:

M8040 = ON STL state transfer is inhibited

M8041 = ON initial states are enabled

M8042 = Start pulse given by start input

M8043 = ON zero return completed

M8044 = ON machine zero detected

M8047 = ON STL monitor enabled

The „ zero ‟ position is sometimes also referred to as a home position, safe position,

neutral position or a datum position.

e) The available operating modes are split into two main groups, manual and automatic.

There are sub-modes to these groups. Their operation is defined as:

Manual

Manual (selected by device S+0)- Power supply to individual loads is turned ON and OFF

by using a separately provided means, often additional push buttons. Zero Return

(selected by device S+1) -Actuators are returned to their initial positions when the Zero

input (S+5) is given.

Automatic

One Step (selected by device S+2)- The controlled sequence operates automatically but

will only proceed to each new step when the start input (S+6) is given.

One Cycle (selected by device S+3) - The controlled actuators are operated for one

operation cycle. After the cycle has been completed, the actuators stop at their„ zero‟

positions. The cycle is started after a „ start ‟ input (S+6) has been given.

A cycle which is currently being processed can be stopped at any time by activating

the„ stop ‟ input (S+7). To restart the sequence from the currently „ paused‟ position the

start input must be given once more.

Automatic (selected by device S+4)-Fully automatic operation is possible in this mode.

The programmed cycle is executed repeatedly when the „ start ‟ input (S+6) is given. The

currently operating cycle will not stop immediately when the „ stop ‟ input (S+7)is given.

159

The current operation will proceed to then end of the current cycle and then stop its

operation.

Note: Start, stop and zero inputs are often given by additional, manually operated

push buttons.

Please note that the „ stop‟ input is only a program stop signal. It cannot be used as a

replacement for an „Emergency stop‟ push button. All safety, „Emergency stop‟ devices

should be hardwired systems which will effectively isolate the machine from operation and

external power supplies. Please refer to local and national standards for applicable safety

practices.

5.7.2 SER (FNC 61)

Operation:

The SER instruction searches a

defined data stack from head

address S1, with a stack length n.

The data searched for is specified

in parameter S2 and the results of

the search are stored at destination device D for 5 consecutive devices.

160

Points to note:

a) Normal rules of algebra are used to determine the largest and smallest values, i.e. -30

is smaller than 6 etc.

b) If no occurrence of the searched data can be found then destination devices D, D+1

and D+2 will equal 0 (zero).

c) When using data register s as the destination device D please remember that 16 bit

operation will occupy 5 consecutive, data registers but 32 bit operation will occupy 10 data

registers in pairs forming 5 double words.

d) When multiple bit devices are used to store the result (regardless of 16 or 32 bit

operation), only the specified size of group is written to for 5 consecutive occurrences, i.e.

K1Y0 would occupy 20 bit devices from Y0 (K1 = 4 bit devices and there will be 5 groups

for the 5 results). As the maximum data stack is 256 (0 to 255) entries long, the optimum

group of bit devices required is K2, i.e. 8 bit devices.

5.7.3 ABSD (FNC 62)

Operation:

This instruction generates a

variety of output patterns (there

are n number of addressed

outputs) in response to the

current value of a selected

counter, S2.

Points to note:

a) The current value of the selected counter (S2) is compared against a user defined data

table. This data table has a head address identified by operand S1. S1should always have

an even device number.

b) For each destination bit (D) there are two consecutive values stored in the data table.

161

The first allocated value represents the event number when the destination device (D) will

be turned ON. The second identifies the reset event. The data table values are allocated

as a consecutive pair for each sequential element between D and D+n.

c) The data table has a length equal to 2× n data entries. Depending on the format of the

data table, a single entry can be one data word such as D300 or a group of16 bit devices

e.g. K4X000.

d) Values from 0 to 32,767 may be used in the data table.

e) The ABSD instruction may only be used ONCE .

From the example instruction and the data table below, the following timing diagram for

elements M0 to M3 can be constructed.

5.7.4 INCD (FNC 63)

Operation:

This instruction generates a sequence of

sequential output patterns (there are n

number of addressed outputs) in response to the current value of a pair of selected

counters (S2, S2+1).

Points to note:

a) This instruction uses a „data table‟ which contains a single list of values which are to be

162

selected and compared by two consecutive counters (S2and S2+1). The data table is

identified as having a head address S1and consists of n data elements.

b) Counter S2 is programmed in a conventional way. The set value for counter S2 MUST

be greater than any of the values entered into the data table. Counter S2 counts a user

event and compares this to the value of the currently selected data element from the data

table.

When the counter and data value are equal, S2 increments the count of counter S2+1and

resets its own current value to „0 ‟ (zero). This new value of counter S2+1selects the new

data element from the data table and counter S2now compares against the new data

elements value.

c) The counter S2+1 may have values from 0 to n. Once the nth data element has been

processed, the operation complete flag M8029 is turned ON. This then automatically

resets counter S2+1 hence, the cycle starts again with data element S1+0.

d) Values from 0 to 32,767 may be used in the data table.

e) The INCD instruction may only be used ONCE in a program.

From the example instruction and the data table identified left, the following timing

diagram for elements M0 to M3 can be constructed.

5.7.5 TTMR (FNC 64)

Operation:

163

The duration of time that the TTMR instruction is energized, is measured and stored in

device D +1 (as a count of 100ms periods).

The data value of D+1(in secs), multiplied by the factor selected by the operand n, is

moved in to register D. The contents of D could be used as the source data for an indirect

timer setting or even as raw data for manipulation.

When the TTMR instruction is de-energized D+1is automatically reset (D is unchanged)

5.7.6 STMR (FNC 65)

Operation:

The designated timer Swill operate for the

duration n with the operational effect being

flagged by devices D+0to D+3. Device

D+0is an off-delay timer, D+1is a one shot

timer. When D+3 is used in the

configuration below, D+1and D+2act in a

alternate flashing sequence.

5.7.7 ALT (FNC 66)

164

Operation:

The status of the destination device (D) is

alternated on every operation of the ALT

instruction.

This means the status of each bit device

will flip-flop between ON and OFF. This

will occur on every program scan unless a

pulse modifier or a program interlock is

used.

The ALT instruction is ideal for switching

between two modes of operation e.g. start and stop, on and off etc.

5.7.8 RAMP (FNC 67)

Operation:

The RAMP instruction varies a current value

(D) between the data limits set by the user

(S1and S2). The „journey ‟ between these

extreme limits takes n program scans. The

current scan number is stored in device D+1.

Once the current value of D equals the set

value of S2the execution complete flag

M8029 is set ON. The RAMP instruction can

vary both increasing and decreasing

differences between S1and S2.

165

Points to note:

a) users may set the operation mode of the RAMP instruction by controlling the state of

special auxiliary relay M8026. When M8026 is OFF, the RAMP instruction will be in repeat

mode. This means when the current value of D equals S2 the RAMP instruction will

automatically reset and start again, i.e. the contents of D will be reset to that of S1 and the

device D+1 (the number of current scans) will reset to „ 0 ‟ (zero). This is shown in the

diagram opposite.

When M8026 is set ON, users will be operating the

RAMP instruction in „ Hold mode‟ .This means once

the current value of D equals that of S2, the RAMP

instruction will „ freeze ‟ in this state. This means the

M8029 will be set ON for as long as the instruction

remains energized and the value of D will not reset

until the instruction is re-initialized, i.e. the RAMP

instruction is turned from OFF to ON again.

b) Users ofHCA2 and PLC ‟s cannot change the

operating mode of the RAMP instruction. For these

PLC‟s the mode is fixed as in the same case as

PLC ‟s when M8026 has been set ON, i.e. HOLD

mode.

c) If the RAMP instruction is interrupted before

completion, then the current position within the ramp is „ frozen ‟ until the drive signal is

re-established. Once the RAMP instruction is re-driven registers D and D+1 reset and the

cycle starts from its beginning again.

d) If the RAMP instruction is operated with a constant scan mode, i.e. D8039 is written to

with the desired scan time (slightly longer than the current scan time) and M8039 is set

ON. This would then allow the number of scans n (used to create the ramp between

S1and S2) to be associated to a time. If 1 scan is equal to the contents of D8039 then the

time to complete the ramp is equal to n × D8039

The RAMP instruction may also be used with special M flags M8193 and M8194 to

mimic the operation of the SER (FNC 61) and RS (FNC 80) respectively when being

programmed on older versions of programming peripherals.

166

5.7.9 ROTC (FNC 68)

Operation:

The ROTC instruction is used to

aid the tracking and positional

movement of the rotary table as

it moves to a specified

destination.

Points to note:

a) This instruction has many automatically de-fined devices. These are listed below.

b) The ROTC instruction may only be used ONCE .

c) The ROTC instruction uses a built in 2-phase counter to detect both movement

direction and distance travelled. Devices D+0and D+1 are used to input the phase pulses,

while device D+2is used to input the „ zero position ‟ on the rotary table. These devices

should be programmed as shown in the example below (where the physical termination

takes place at the associated X inputs).

The movement direction is found by checking the relationship of the two phases of the 2

phase counter, e.g.

167

Assigned devices

Indirect user selected devices:

D +0 A-phase counter signal - input

D +1 B-phase counter signal - input

D +2 Zero point detection - input

D +3 High speed forward - output

D +4 Low speed forward - output

D +5 Stop - output

D +6 Low speed reverse - output

D +7 High speed reverse – output

Rotary table constants:

m 1 Number of encoder pulses per table revolution

m 2 Distance to be travelled at low speed (in encoder pulses)

Operation variables:

S +0 Current position at the „ zero point‟ READ ONLY

S +1 Destination position (selected station to be moved to) relative to the „zero point‟ -

User defined

S +2 Start position (selected station to be moved) relative to the „zero point‟ -User defined

d) When the „zero point ‟ input (D+2) is received the contents of device S+0 is reset to „ 0 ‟

(zero). Before starting any new operation it is advisable to ensure the rotary table is

initialized by moving the „ zero point‟ drive dog or marker around to the „zero point‟ sensor.

This could be considered as a calibration technique. The re-calibration of the rotary table

should be carried out periodically to ensure a consistent/accurate operation.

e) Devices D+3 to D+7 are automatically set by the ROTC instruction during its operation.

These are used as flags to indicate the operation which should be carried out next.

f) All positions are entered in the form of the required encoder pulses. This can be seen in

the following example:

- Example:

A rotary table has an encoder which outputs 400 (m1) pulses per revolution. There are 8

stations (0 to 7) on the rotary table. This means that when the rotary table moves from one

station to its immediately following station, 50 encoder pulses are counted. The „ zero

168

position‟ is station „0 ‟ (zero). To move the item located at station 7 to station 3 the

following values must be written to the ROTC instruction:

S+1=3 × 50 = 150 (station 3‟s position in encoder pulses from the zero point)

S+2=7 × 50 = 350 (station 7‟s position in encoder pulses from the zero point)

m1= 400 (total number of encoder pulses per rev)

The rotary table is required approach the destination station at a slow speed starting from

1.5 stations before the destination. Therefore;

m2= 1.5 × 50 = 75 slow speed distance either side of the destination station (in encoder

pulses)

5.7.10 SORT (FNC 69)

Operation:

This instruction constructs a data

table of m1 records with m 2

fields having a start or head

address of S. Then the data in

field n is sorted in to numerical order while retaining each individual records integrity. The

resulting (new) data table is stored from destination device D.

Points to note:

a) When a sort occurs each record is sorted in to ascending order based on the data in the

selected sort field n.

b) The source (S) and destination (D) areas can be the same BUT if the areas are chosen

to be different, there should be no overlap between the areas occupied by the tables.

c) Once the SORT operation has been completed the „Operation Complete Flag‟ M8029 is

turned ON. For the complete sort of a data table the SORT instruction will be processed

m1times.

d) During a SORT operation, the data in the SORT table must not be changed. If the data

is changed, this may result in an incorrectly sorted table.

e) The SORT instruction may only be used ONCE in a program.

From the example instruction and the„ data table‟ below left, the following data

manipulation will occur when „n ‟ is set to the identified field

169

Original Table1st table sort when n= 2 2nd table sort when n=1

Applied Instructions:

170

Symbols list:

D - Destination device.

S - Source device. m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D 1 ,S3 or for lists/tabled devices D3+0, S +9etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number,

i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆ - An instruction operating in 16 bit mode, where ☆☆☆ identifies the instruction

mnemonic.

☆☆☆P - A 16 bit mode instruction modified to use pulse (single) operation.

D ☆☆☆ - An instruction modified to operate in 32 bit operation.

D☆☆☆P - A 32 bit mode instruction modified to use pulse (single) operation

A repetitive instruction which will change the destination value on every scan

unless modified by the pulse function.

171

An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

will have no effect to the value of the operand.

5.8.1 TKY (FNC 70)

Operation:

This instruction can read from 10

consecutive devices(S +0 to S

+9) and will store an entered

numeric string in device D 1 .

Points to note:

a) When a source device becomes active its associated destination (bit) device D2 also

becomes active. This destination device will remain active until another source device is

operated. Each source device maps directly to its own D2 device, i.e. S +0maps to

D2+0 ,S+7 maps to D2+7 etc. These in turn, map directly to decimal values which are

then stored in the destination data devices specified by D1 .

b) One source device may be active at any one time. The destination device D2+10 is

used to signify that a key (one of the 10 source devices) has been pressed. D 2+10 will

remain active for as long as the key is held down. When the TKY instruction is active,

every press of a key adds that digit to the stored number in D1 . When the TKY is OFF, all

of the D 2 devices are reset, but the data value in D 1 remains intact.

c) When the TKY instruction is used with 16 bit operation, D 1 can store numbers from 0 to

9,999 i.e. max. 4 digits. When the DTKY instruction is used (32 bit operation) values of 0

to 99,999,999 (max. 8 digits) can be accommodated in two consecutive devices D 1 and D

1+1 . In both cases if the number to be stored exceeds the allowable ranges, the highest

digits will overflow until an allowable number is reached. The overflowed digits are lost

and can no longer be accessed by the user. Leading zero‟s are not accommodated, i.e.

172

0127 will actually be stored as 127 only.

d) The TKY instruction may only be used ONCE .

e) Using the above instruction as a brief example: If

the ‘ keys‟ identified (a) to (d) are pressed in that

order the number 2,130 will be entered into D1 .If

the key identified as (e) is then pressed the value in

D 1 will become 1,309. The initial„2 ‟ has been lost.

5.8.2 HKY (FNC 71)

Operation 1 - Standard:

This instruction creates a

multiplex of 4 outputs (D1) and 4

inputs (S) to read in 16 different

devices. Decimal values of 0 to 9

can be stored while 6 further

function flags may be set.

Points to note:

a) Each of the first 10 multiplexed source devices (identified as 0 to 9) map directly to

decimal values 0 to 9. When entered, i.e. a source device is activated, then its associated

decimal value is added to the data string currently stored in D2 . Activation of any of these

keys causes bit device D 3+7 to turn ON for the duration of that key press.

b) The last 6 multiplexed source devices (identified as function keys A to F) are used to set

bit devices D3+0 to D 3+5 respectively. These bit flags, once set ON, remain ON until the

next function key has been activated. Activation of any of these keys causes bit device

173

D3+6 to turn ON for the duration of that key press.

c) In all key entry cases, when two or more keys are pressed, only the key activated first is

effective. When the pressing of a key is sensed the M8029 (execution complete flag) is

turned ON. When the HKY instruction is OFF, all D 3 devices are reset but data value D 2

remains intact.

d) WhentheHKYinstructionisusedwith16bit operation, D 2

can store numbers from 0 to 9,999 i.e. max. 4 digits. When

the DHKY instruction is used (32 bit operation) values of 0

to 99,999,999 (max. 8 digits) can be accommodated in

two consecutive devices D2 and D 2+1 .In both cases if

the number to be stored exceeds the allowable ranges,

the highest digits will overflow until an allowable number is

reached. The over-flowed digits are lost and can no longer

be accessed by the user. Leading zero ‟ s are not

accommodated, i.e. 0127 will actually be stored as 127

only. This operation is similar to that of the TKY

instruction.

e) The HKY instruction may only be used ONCE .

f) Normal operation requires 8 scans to read the key

inputs. To achieve a steady and repeatable

performance, constant scan mode should be used,

i.e. M8039 is set ON and a user defined scan time is

written to register D8039. However, for a faster

response the HKY instruction should be

programmed in a timer interrupt routine as shown in the example opposite.

Operation 2 - Using the HKY Instruction With

M8167:

(Applicable units:)

When the HKY instruction is used with flag

M8167 ON (as shown right), the operation of

keys A through F allow actual entry of the

Hexadecimal values of A through F respectively

into the data device D2 .This is in addition to the

standard 0 through 9 keys. All other operation is

as specified in „ Operation 1 - Standard‟ .

Maximum storage values for this operation

become FFFF in 16 bit mode and FFFFFFFF in 32 bit (double word) mode.

174

5.8.3 DSW (FNC 72)

Operation:

This instruction multiplexes 4

outputs (D1) through 1 or 2(n) sets

of switches. Each set of switches

consists of 4 thumbwheels

providing a single digit input.

Points to note:

a) When n = 1 only one set of switches are read. The

multiplex is completed by wiring the thumbwheels in

parallel back to 4 consecutive inputs from the head

address specified in operand S. The (4 digit) data

read is stored in data device D 2 .

Continued on next page...

b) When n= 2, two sets of switches are read. This

configuration requires 8 consecutive inputs taken

from the head address specified in operand S. The

data from the first set of switches, i.e. those using the

first 4 inputs, is read into data device D 2 . The data

from the second set of switches (again 4 digits) is

175

read into data device D2+1 .

c) The outputs used for multiplexing (D 1)are cycled for as long as the DSW instruction is

driven. After the completion of one reading, the execution complete flag M8029 is set. The

number of outputs used does not depend on the number of switches n.

d) If the DSW instruction is suspended during mid-operation, when it is restarted it will

start from the beginning of its cycle and not from its last status achieved.

e) It is recommended that transistor output units are used with this instruction. However, if

the program technique at the right is used, relay output units can be successfully operated

as the outputs will not be continually active.

f) The DSW instruction may be used TWICE on controllers. / HCA2 units can operate

an Unlimited number of DSW instructions.

5.8.4 SEGD (FNC 73)

Operation:

A single hexadecimal digit (0 to 9, A to F)

occupying the lower 4 bits of source device

S is decoded into a data format used to drive

a seven segment display. A representation

of the hex digit is then displayed. The

decoded data is stored in the lower 8 bits of

destination device D. The upper 8 bits of the

same device are not written to. The diagram

opposite shows the bit control of the seven

segment display. The active bits correspond to those set to 1 in the lower 8 bits of the

destination device D.

176

5.8.5 SEGL (FNC 74)

Operation:

This instruction takes a source decimal value

(S) and writes it to a set of 4 multiplexed,

outputs (D). Because the logic used with

latched seven segment displays varies

between display manufactures, this instruction can be modified to suit most logic

requirements. Configurations are selected depending on the value of n, see the following

page.

Points to note:

a) Data is written to a set of multiplexed outputs (D+0to D+7, 8 outputs) and hence seven

segment displays. A set of displays consists of 4 single digit seven segment units. A

maximum of two sets of displays can be driven with this instruction. When two sets are

used the displays share the same strobe outputs (D +4 to D+7are the strobe outputs). An

additional set of 4 output devices is required to supply the new data for the second set of

displays (D +10 to D +13 , this is an octal addition). The strobe outputs cause the written

data to be latched at the seven segment display.

b) Source data within the range of 0 to 9,999 (decimal) is written to the multiplexed outputs.

When one set of displays are used this data is taken from the device specified as operand

S. When two sets of displays are active the source device S+1supplies the data for the

second set of displays. This data must again be within the range 0 to 9,999. When using

two sets of displays the data is treated as two separate numbers and is not combined to

provide a single output of 0 to 99,999,999.

c) The SEGL instruction takes 12 program scans to complete one output cycle regardless

of the number of display sets used. On completion, the execution complete flag M8029 is

set.

177

d) If the SEGL instruction is suspended during mid-operation, when it is restarted it will

start from the beginning of its cycle and not from its last status achieved.

e) The SEGL instruction may be used TWICE on controllers. &HCA2 units can

operate an Unlimited number of SEGL instructions.

Selecting the correct value for operand n

The selection of parameter n depends on 4 factors;

1) The logic type used for the PLC output

2) The logic type used for the seven segment data lines

3) The logic type used for the seven segment strobe signal

There are two types of logic system available, positive logic and negative logic.

Depending on the type of system, i.e. which elements have positive or negative logic the

value of n can be selected from the table below with the final reference to the number of

sets of seven segment displays being used.

178

5.8.6 ARWS (FNC 75)

Operation:

This instruction displays the contents of a

single data device D1 on a set of 4 digit, seven

segment displays. The data within D1 is

actually in a standard decimal format but is automatically converted to BCD for display on

the seven segment units. Each digit of the displayed number can be selected and edited.

The editing procedure directly changes the value of the device specified as D1 .

Points to note:

a) The data stored in destination device D1 can have a value

from the range 0 to 9,999 (decimal), i.e. 4 digit data. Each digits

data value, can be incremented (S +1) or decremented (S+0) by

pressing the associated control keys. The edited numbers

automatically „ wrap-around ‟ from 9 - 0 - 1 and 1 -0 - 9. The digit

data is displayed by the lower 4 devices from D 2 ,i.e.D 2+0 to D

2+3 .

179

b) On initial activation of the ARWS instruction, the digit in the numeric position 10 3 is

currently selected. Each digit position can be

sequentially „ cursored through ‟ by moving to the

left (S +2) or to the right (S +3). When the last digit

is reached, the ARWS instruction automatically

wraps the cursor position around, i.e. after position

103, position 10 0 is selected and vice-versa. Each

digit is physically selected by a different „ strobe‟

output.

c) To aid the user of an operation panel controlled with the ARWS instruction, additional

lamps could be wired in parallel with the strobe outputs for each digit. This would indicate

which digit was currently selected for editing.

d) The parameter n has the same function as parameter n of the SEGL instruction,

„ Selecting the correct value for operand n„ . Note: as the ARWS instruction only controls

one set of displays only values of 0 to 3 are valid for n.

e) The ARWS instruction can be used ONCE . This instruction should only be used on

transistor output PLC ‟s.

5.8.7 ASC (FNC 76)

Operation:

The source data string S consists of

up to 8 characters taken from the

printable ASCII character (Char) set.

If less than 8 Char are used,

The difference is made up with null Char(ASCII 00).

The source data is converted to its associated ASCII codes. The codes are then stored in

the destination devices D, see example shown below.

180

Note: ASCII Char cannot be entered from a hand held programmer.

5.8.8 PR (FNC 77)

Operation:

Source data (stored as ASCII values) is

read byte by byte from the source data

devices. Each byte is mapped directly to

the first 8 consecutive destination devices

D +0to D +7). The final two destination bits provide a strobe signal (D +10 , numbered in

octal) and an execution/busy flag (D +11 ,in octal).

Points to note:

a) The source byte-data maps the lowest bit to the first destination device D+0.

Consequently the highest bit of the byte is sent to destination device D +7.

b) The PR instruction may only be used TWICE in a sequence program. This instruction

should only be used on transistor output PLC ‟s. The PR instruction will not automatically

repeat its operation unless the drive input has been turned OFF and ON again.

c) The operation of the PR instruction is program scan dependent. Under standard

circumstances it takes 3 program scans to send 1 byte. However, for a faster operation

the PR instruction could be written into a timer interrupt routine similar to the one

demonstrated for HKY.

181

d)8 byte operation has the following timing diagram. It

should be noted that when the drive input (in the

example X0) is switched OFF the PR instruction will

cease operation. When it is restarted the PR

instruction will start from the beginning of the message

string. Once all 8 bytes have been sent the

execution/busy flag is dropped and the PR instruction

suspends operation.

e) 16 byte operation requires the special auxiliary flag

M8027 to be driven ON (it is recommended that

M8000 is used as a drive input). In this operation mode

the drive input (in the example X0) does not have to be

active all of the time. Once the PR instruction is

activated it will operate continuously until all 16 bytes

of data have been sent or the value 00H (null) has

been sent. Once the operation is complete the

execution/busy flag (D +11 ,octal)is turned OFF and M8029 the execution complete flag is

set.

5.8.9 FROM (FNC 78)

Operation:

The FROM instruction reads n

words of data starting from the

buffer memory address m2 of the

special function block with the

logical block position specified as m 1, The read data is stored in the PLC at head address

D for n word devices.

182

Points to note:

a) All special function blocks which are addressable with the FROM/TO instructions are

connected to the extension bus on the right hand side of the PLC. Each special function

block can be inserted at any point within the chain of extended units (as long as the

system configuration rules are not broken). Each special function block is consecutively

addressed from 0 to 7 beginning with the one closest to the base unit

b) Each special function unit has different buffer memory registers. These often have a

dedicated use for each individual unit. Before any reading or writing of data is undertaken

ensure that the correct buffer memory allocations for the unit used are known. m 2 : This

defines the head address of the (special function blocks) buffer memories being accessed.

m 2 may have a value from the range 0 to 31. n: This identifies the number of words which

are to be transferred between the special function block and the PLC base unit. n may

have a value of 1 to 31 for 16 bit operation but a range of 1 to 16 is available for 32 bit

operation.

c) The destination head address for the data read FROM the special function block is

specified under the D operand; and will occupy n further devices.

d) This instruction will only operate when the drive input is energized.

e) Users of all PLC models have the option of allowing interrupts to occur immediately, i.e.

during the operation of the FROM/TO instructions or to wait until the completion of the

current FROM/ TO instruction. This is achieved by controlling the special auxiliary flag

M8028. The following table identifies certain points associated with this control and

operation.

Users of have no option for interruption of the FROM/TO instructions and hence always

operate in a mode equivalent to having M8028 switched OFF.

183

5.8.10 TO (FNC 79)

Operation:

The TO instruction writes n words

of data to the head buffer memory

address m2 of the special function

block with the logical block

position specified in m1 . The written data is taken from the PLC ‟s head address S for n

word devices.

Points to note:

All points are the same as the FROM instruction (see previous page) except point c) which

is replaced by the following:

a) The source head address for the data written TO the special function block is specified

under the S operand.

184

Applied Instructions:

185

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D 1 ,S3 or for lists/tabled devices D3+0, S +9etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number,

i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆ - An instruction operating in 16 bit mode, where☆☆☆ identifies the instruction

mnemonic.

☆☆☆P - A 16 bit mode instruction modified to use pulse (single) operation.

D☆☆☆ - An instruction modified to operate in 32 bit operation.

D ☆☆☆P - A 32 bit mode instruction modified to use pulse (single) operation.

A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.

An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

will have no effect to the value of the operand.

5.9.1 RS (FNC 80)

Operation:

This instruction performs the direct

control of communications over

communication adapters which

connect to the left hand port of the

Main Processing Unit.

186

Points to note:

a) This instruction has many automatically defined devices. These are listed in the boxed

column to the right of this page.

b) The RS instruction has two parts, send (or transmission) and receive. The first

elements of the RS instruction specify the transmission data buffer (S) as a head address,

which contains m number of elements in a sequential stack. The specification of the

receive data area is contained in the last two parameters of the RS instruction. The

destination (D) for received messages has a buffer or stack length of n data elements. The

size of the send and receive buffers dictates how large a single message can be. Buffer

sizes may be updated at the following times:

1) Transmit buffer - before transmission occurs, i.e. before M8122 is set ON

2) Receive buffer - after a message has been received and before M8123 is reset.

c) Data cannot be sent while a message is being received, the transmission will be

delayed - see M8121.

d) More than one RS instruction can be programmed but only one may be active at any

one time.

e) Refer to the HC Communications Manual when using this function

Assigned devices

Data devices:

D8120 - Contains the configuration parameters for communication, i.e. Baud rate, Stop

bits etc. Full details over the page

D8122 - Contains the current count of the number of remaining bytes to be sent in the

currently transmitting message.

D8123 - Contains the current count of the number of received bytes in the „incoming‟

message.

D8124 - Contains the ASCII code of the character used to signify a message header -

default is „ STX ‟ , 02 HEX.

D8125 - Contains the ASCII code of the character used to signify a message terminator

-default is ‘ ETX ‟ ,03HEX.

Operational flags:

M8121 - This flag is ON to indicate a transmission is being delayed until the current

receive operation is completed.

M8122 - This flag is used to trigger the transmission of data when it is set ON.

M8123 - This flag is used to identify (when ON) that a complete message has been

received.

M8124 - Carrier detect flag. This flag is for use with BRASILTEC Main Processing Units.

It is typically useful in modem communications

M8161 - 8 or 16 bit operation mode ON = 8 bit mode where only the lower 8 bits in each

source or destination device are used, i.e. only one ASCII character is stored in one data

register OFF = 16bit mode where all of the available source/ destination register is used,

187

i.e. two ASCII characters are stored in each data register

5.9.2 RUN (FNC 81)

Operation:

This instruction is used with the

parallel link adapters. It allows

source data to be moved into the bit

transmission area. The actual

control of the parallel link communication is by special M flags.

Points to note:

a) Parallel link communications automatically take

place when both systems are „ linked ‟ and the

Master station (M8070), Slave station flags (M8071)

have been set ON (there is no need to have a

PRUN instruction for communications).

There can only be one of each type of station as

this system connects only two PLC‟ s. The

programs shown opposite should be inserted into

the appropriate PLC ‟s programs.

Once the station flags have been set, they can only be cleared by either forcibly

resetting them when the PLC is in STOP mode or turning the power OFF and ON again.

b) During automatic communications the following data is „swapped‟ between the Master

and Slave PLC‟s.

188

c) The PRUN instruction enables data to be moved into the bit transmission area or out of

the (bit) data received area. The PRUN instruction differs from the move statement in that

it operates in octal. This means if K4X20 was moved using the PRUN instruction to

K4M920, data would not be written to M928 and M929 as these devices fall outside of the

octal counting system. This can be seen in the diagram below.

5.9.3 ASCI (FNC 82)

Operation:

This instruction reads n

hexadecimal data characters from

head source address (S) and

converts them in to the equivalent

ASCII code.

This is then stored at the destination (D) for n number of bytes.

Points to note:

Please note that data is converted „as read‟, i.e. using the example above with the

following data in (D9,D8) ABCDH,EF26H. Taking the first n hexadecimal characters (digits)

189

from the right (in this case n= 6) and converting them to ASCI will store values in 6

consecutive bytes from D20, i.e. D20 = (67, 68), D21 = (69, 70) and D22 = (50, 54)

respectively. In true characters symbols that would be read asCDEF26.

This can be shown graphically as in the

table to the right. Please take special

note that the source data (S) read from

the most significant device to the least

significant. While the destination data (D)

is read in the opposite direction.

The ASCI instruction can be used with

the M8161, 8 bit/16bit mode flag. The

example to the right shows the effect

when M8161 is OFF.

If M8161 was set ON, then only the lower destination byte (b0-7) would be used to store

data and hence 6 data registers would be required (D20 through D25).

ASCII Character Codes

The table below identifies the usable hexadecimal digits and their associated ASCII

codes.

5.9.4 HEX (FNC 83)

Operation:

190

This instruction reads n ASCII data bytes from head source address (S) and converts

them in to the equivalent Hexadecimal character. This is then stored at the destination (D)

for n number of bytes.

Points to note:

Please note that this instruction „works in reverse‟ to the ASCI instruction, i.e. ASCII data

stored in bytes is converted into associated hexadecimal characters. The HEX instruction

can be used with the M8161 8bit/16bit flag. In this case the source data (S)is read from

either the lower byte (8bits) when M8161 is ON, or the whole word when M8161 is OFF i.e.

using the example above with the following

data in devices D50 and D51 respectively

(43H,41H)(42H,31H) and assuming M8161 is

ON. The ASCII data is converted to its

hexadecimal equivalent and stored

sequentially digit by digit from the destination

head address. If M8161 had been OFF, then the contents of D20 would read CAB1H.

For further details regarding the use of the HEX instruction and about the available

ASCII data ranges, please see the following information point „ASCII Character Codes‟

under the ASCI instruction on the previous page.

If an attempt is made to access an ASCII Code (HEX or Decimal) which falls

outside of the ranges specified in the table on previous page, the instruction is not

executed. Error 8067 is flagged in data register D8004 and error 6706 is identified in

D8067. Care should be taken when using the M8161 flag, and additional in the

specification of the number of element „n„ which are to be processed as these are the

most likely places where this error will be caused.

5.9.5 CCD (FNC 84)

191

Operation:

This instruction looks at a byte (8

bit) stack of data from head

address (S)for n bytes and

checks the vertical bit pattern for

parity and sums the total data

stack. These two pieces of data are then stored at the destination (D).

Points to note:

a) The SUM of the data stack is stored at destination D while the Parity for the data stack

is stored at D+1.

b) During the Parity check an even result is indicated by the use of a 0 (zero) while an odd

parity is indicated by a 1 (one).

c) This instruction can be used with the 8 bit/ 16 bit mode flag M8161. The following

results will occur under these circumstances.

It should be noted that when M8161 is OFF „n‟ represents the number of consecutive

bytes checked by the CCD instruction. When M8161 is ON only the lower bytes of „n‟

consecutive words are used.

The „SUM‟ is quite simply a summation of the total quantity of data in the data stack. The

Parity is checked vertically through the data stack as shown by the shaded areas.

5.9.6 VRRD (FNC 85)

192

Operation:

The identified volume (S) on the

8AV is read as an analog input.

The analog data is in an 8 bit

format, i.e. values from 0 to 255

are readable. The read data is stored at the destination device identified under operand D.

Note:

The 8AV volume „inputs‟ are able to be read in two formats, a) as an analog value and b)

as an 11 (0 to 10) position rotary switch. The second use is described in the VRSC

instruction (FNC 86).

5.9.7 VRSD (FNC 86)

Operation:

The identified volume (S) on the

8AV is read as a rotary switch with

11 set positions (0 to 10). The

position data is stored at device D

as an integer from the range 0 to

10.

Note:

The 8AV volume „inputs‟ are able to be read in two formats, a)asa11(0to10)position

rotary switch and b) as an analog value. The second use is described in the VRRD

instruction (FNC 85).

193

5.9.8 PID (FNC 88)

Operation:

This instruction takes a current

value (S2) and compares it to a

predefined set value (S1). The

difference or error between the

two values is then processed

through a PID loop to produce a correction factor which also takes into account previous

iterations and trends of the calculated error. The PID process calculates a correction

factor which is applied to the current output value and stored as a corrected output value

in destination device (D). The setup parameters for the PID control loop are stored in 25

consecutive data registers S3+0 through S3+24.

Points to note:

a) Every PID application is different. There will be a certain amount of “trial and error”

necessary to set the variables at optimal levels.

b) On F &HCA2 MPUs a Pre-tuning feature is available that can quickly provide initial

values for the PID process.

c) The does not have analog capabilities, it is therefore necessary to use RS232

communications to achieve basic PID operation.

d) As 25 data register are required for the setup parameters for the PID loop, the head

address of this data stack cannot be greater than D975. The contents of this data stack

are explained later in this section. Multiple PID instructions can be programmed, however

each PID loop must not have conflicting data registers.

e) There are control limits in the PLC intended to help the PID controlled machines

operate in a safe manner. If it becomes necessary to reset the Set Point Value (S1) during

operation, it is recommended to turn the PID command Off and restore the command after

entering the new Set Point Value. This will prevent the safety control limits from stopping

the operation of the PID instruction prematurely.

f) The PID instruction has a special set of error codes associated with it. Errors are

identified in the normal manner. The error codes associated with the PID loop will be

194

flagged by M8067 with the appropriate error code being stored in D8067. These error

devices are not exclusive to the PID instruction so care should be taken to investigate

errors properly. Please see chapter 6,„Diagnostic Devices‟ for more information.

g) A full PID iteration does not have to be performed. By manipulation of the setup

parameters P (proportional), I (Integral) or D (derivative) loops may be accessed

individually or in a user defined/selected group. This is detailed later in this section.

PID Equations

Please see the Parameter setup section for a more detailed description of the variable

parameters and in which memory register they must be set.

Forward and Reverse operation (S3 +1, b0)

195

The Forward operation is the condition where the Process Value, PVnf , is greater than

the Set Point, SV. An example is a building that requires air conditioning. Without air

conditioning, the temperature of the room will be higher than the Set Point so work is

required to lower PV nf . The Reverse operation is the condition where the Set Point is

higher than the Process Value.

An example of this is an oven. The temperature of the oven will be too low unless some

work is done to raise it, i.e. - the heating element is turned On.

The assumption is made with PID control that some work will need to be performed to

bring the system into balance. Therefore, ∆MV will always have a value. Ideally, a system

that is stable will require a constant amount of work to keep the Set Point and Process

Value equal.

PID setup parameters; S3

The PID setup parameters are contained in a 25 register data stack. Some of these

devices require data input from the user, some are reserved for the internal operation and

some return output data from the PID operation. Parameters S3+0 through S3 +6 must be

set by the user.

Parameter S3

+P

Parameter

name/function

Description Setting range

S3+0 Sampling time

TS

The time interval set between the reading the

current Process Value of the system (PVnf)

1 to 32767

msec

S3+1 Action -

reaction

direction and

alarm control

b0 Forward operation(0), Reverse

operation (1)

Not

applicable

b1 Process Value (PVnf) alarm enable,

OFF(0)/ ON(1)

b2 Output Value (MV) alarm enable,

OFF(0)/ON(1)

b3 -

15

Reserved

S3+2 Input filter α Alters the effect of the input filter. 0 to 99%

S3+3 Proportional

gain KP

This is a factor used to align the

proportional output in a known magnitude to

the change in the Process Value (PV nf). This

is the P part of the PID loop

1to

32767%

S3+4 Integral time

constant TI

This is the I part of the PID loop.

This is the time taken for the corrective

integral value to reach a magnitude equal to

that applied by the proportional or P part of

the loop. Selecting 0 (zero) for this parameter

disables the I effect.

(0 to 32767)

x 100 msec

S3+5 Derivative This is the D part of the PID loop. (0 to 32767)

196

gain KD This is the time taken for the corrective

derivative value to reach a magnitude equal

to that applied by the

proportional or P part of the loop. Selecting 0

(zero) for this parameter disables the D

effect.

x10msec

S3+7 to

S3+19

Reserved for use for the internal processing

S3+20 Process Value,

maximum

positive

change

Active

when

S3+1, b1

is set

ON.

This is a user defined maximum

limit for the Process Value

(PVnf). If the Process Value

(PVnf) exceeds the limit, S3+24,

bit b0 is set On

0 to 32767

S3+21 Process Value,

minimum value

This is a user defined lower limit

for the Process Value. If the

Process Value (PVnf) falls below

the limit, S3+24, bit b1 is set On

S3+22 Output Value,

maximum

positive

change

Active

when

S3+1, b2

is set

ON.

This is a user defined maximum

limit for the quantity of positive

change which can occur in one

PID scan. If the Output Value

(MV) exceeds

this, S3+24, bit b2 is set On

S3+23 Output Value,

maximum

negative

change

This is a user defined maximum

limit for the quantity of negative

change which can occur in one

PID scan. If the Output Value

(MV) falls below the lower limit,

S3+24, bit b3 is set On

S3+24 Alarm flags

(Read Only)

b0 High limit exceeded in Process

Value (PVnf)

Not

applicable

b1 Below low limit for the Process

Value (PVnf)

b2 Excessive positive change in

Output Value (MV)

b3 Excessive negative change in

Output Value (MV)

b4 - 15 Reserved

Configuring the PID loop

The PID loop can be configured to offer variations on PID control. These are as follows:

197

It should be noted that in all situations there must be a proportional or „P‟ element to the

loop.

P - proportional change

When a proportional factor is applied, it calculates the difference between the Current

Error Value, EVn, and the Previous Error Value, EV n-1. The Proportional Change is

based upon how fast the Process Value is moving closer to (or further away from) the Set

Point Value NOT upon the actual difference between the PVnf and SV.

Note: Other PID systems might operate using an equation that calculates the Proportional

change based upon the size of the Current Error Value only.

I - integral change

Once a proportional change has been applied to an error situation, „fine tuning‟ the

correction can be performed with the I or integral element. Initially only a small change is

applied but as time increases and the error is not corrected the integral effect is increased.

It is important to note how T I actually effects how fast the total integral correction is

applied. The smaller T I is, the bigger effect the integral will have.

Note: The TI value is set in data register S3+4. Setting zero for this variable disables the

Integral effect.

The Derivative Change

The derivative function supplements the effects caused by the proportional response. The

derivative effect is the result of a calculation involving elements TD,TS, and the calculated

error. This causes the derivative to initially output a large corrective action which

dissipates rapidly over time. The speed of this dissipation can be controlled by the value

TD: If the value of TD is small then the effect of applying derivative control is increased.

Because the initial effect of the derivative can be quite severe there is a „softening‟ effect

which can be applied through the use of KD, the derivative gain. The action of KD could

be considered as a filter allowing the derivative response to be scaled between 0 and

100%.

The phenomenon of chasing, or overcorrecting both too high and too low, is most often

associated with the Derivative portion of the equation because of the large initial

correction factor.

Note: The TD value is set in Data register S3+6. Setting zero for this variable disables the

Derivative effect.

Effective use of the input filter αS3+2

198

To prevent the PID instruction from reacting immediately and wildly to any errors on the

Current Value, there is a filtering mechanism which allows the PID instruction to observe

and account for any significant fluctuations over three samples.

The quantitative effect of the input filter is to calculate a filtered Input Value to the PID

instruction taken from a defined percentage of the Current Value and the previous two

filtered Input Values.

This type of filtering is often called first-order lag filter. It is particularly useful for removing

the effects of high frequency noise which may appear on input signals received from

sensors. The greater the filter percentage is set the longer the lag time. When the input

filter is set to zero, this effectively removes all filtering and allows the Current Value to be

used directly as the Input Value.

Initial values for PID loops

The PID instruction has many parameters which can be set and configured to the user‟s

needs. The difficulty is to find a good point from which to start the fine tuning of the PID

loop to the system requirements. The following suggestions will not be ideal for all

situations and applications but will at least give users of the PID instruction a reasonable

points from which to start.

A value should be given to all the variables listed below before turning the PID instruction

ON. Values should be chosen so that the Output Manipulated Value does not exceed ±

32767.

Recommended initial settings:

TS= Should be equal to the total program scan time or a multiple of that scan time, i.e. 2

times, 5times,etc.

α=50%

KP= This should be adjusted to a value dependent upon the maximum corrective action to

reach the set point - values should be experimented with from an arbitrary 75%

TI= This should ideally be 4 to 10 times greater than the TD time

KD= 50%

TD= This is set dependent upon the total system response, i.e. not only how fast the

programmable controller reacts but also any valves, pumps or motors.

For a fast system reaction TD will be set to a quick or small time, this should however

never be less than TS. A slower reacting system will require the TD duration to be longer.

A beginning value can be TD twice the value of TS.

Care should be taken when adjusting PID variables to ensure the safety of the operator

and avoid damage to the equipment.

On MPUs pre-tuning feature is available that can quickly provide initial values for

the PID process.

199

With ALL PID values there is a degree of experimentation required to tune the PID

loop to the exact local conditions. A sensible approach to this is to adjust one

parameter at a time by fixed percentages, i.e. say increasing (or decreasing) the KP

value in steps of 10%. Selecting PID parameters without due consideration will

result in a badly configured system which does not perform as required and will

cause the user to become frustrated. Please remember the PID process is a purely

mathematical calculation and as such has no regard for the ‘quality’ of the variable

data supplied by the user/system - the PID will always process its PID mathematical

function with the data available.

Example PID Settings

The partial program shown at below demonstrates which parameters must be set for the

functioning of the . The first step sets the user values for S 3+0 to S3+6. The PID

instruction will be activated when M4 is On.

From the PID instruction at the bottom of the ladder, S1= D200; S2= D201; S3= D500; and

D or MV = D525.

D500: Ts = 500 ms

D501: Forward Operation,

Alarms Not Enabled

D502: Input Filter = 50%

D503: KP=75%

D504: TI =4000ms

D505: KD= 50%

D506: TD = 1000 ms

D200: Set Point = 1000

D201: PVnf (an analog input value)

Begin the PID instruction

D525: PID Output Value

200

Applied Instructions:

201

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D1,S3or for lists/tabled devices D3+0,S+9etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number,

i.e.

positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆�- An instruction operating in 16 bit mode, where☆☆☆�identifies the instruction

mnemonic.

☆☆☆P - A 16 bit mode instruction modified to use pulse (single) operation.

D☆☆☆�- An instruction modified to operate in 32 bit operation.

D�☆☆☆�P - A 32 bit mode instruction modified to use pulse (single) operation.

A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.

An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

202

will have no effect to the value of the operand.

5.10.1 ECMP (FNC 110)

Operation:

The data of S1is compared to the

data of S2.The result is indicated

by 3 bit devices specified with the

head address entered as D. The bit

devices indicate:

S2 is less than < S1- bit device D is

ON

S2 is equal to = S1-bitdeviceD+1is

ON

S2 is greater than > S1- bit device D+2is ON

Points to note:

The status of the destination devices will be kept even if the ECMP instruction is

deactivated. Full algebraic comparisons are used: i.e. -1.79×10 27 is smaller than 9.43 ×10
-15.

5.10.2 EZCP (FNC 111)

203

Operation:

The operation is the same as the

ECMP instruction except that a single

data value (S3)is compared to a data

range (S1-S2).

S3is less than S1and S2- bit device D

is ON

S3is between S1and S2- bit device

D+1is ON

S3is greater than S2- bit device D+2is ON

5.10.3 EBCD (FNC 118)

Operation:

Converts a floating point value at

S into separate mantissa and

exponent parts at D and D+1

(scientific format).

Points to note:

a) The instruction must be double word format. The destinations D and D+1represent the

mantissa and exponent of the floating point number respectively.

b) To provide maximum accuracy in the conversion the mantissa D will be in the range

1000 to 9999 (or 0) and the exponent D+1corrected to an appropriate value.

c) E.g. S= 3.4567×10 -5 will become D= 3456, D+1=-8.

204

5.10.4 EBIN (FNC 119)

Operation:

Generates a floating point number

at D from scientific format data at

source S.

Points to note:

a) The instruction must be double word format. The source data Sand S+1represent the

mantissa and exponent of the floating point number to be generated.

b) To provide maximum accuracy in the conversion the mantissa S must be in the range

1000 to 9999 (or 0) and the exponent S+1corrected to an appropriate value.

c) E.g. S= 5432, S+1= 12 will become D= 5.432 x 10 9

5.10.5 EADD (FNC 120)

Operation:

The floating point values stored in

the source devices S1and S2are

algebraically added and the result

stored in the destination device D.

Points to note:

a) The instruction must use the double word format; i.e., DEADD or DEADDP. All source

205

data and destination data will be double word; i.e. uses two consecutive data registers to

store the data (32 bits).

Except for K or H, all source data will be regarded as being in floating point format and the

result stored in the destination will also be in floating point format.

b) If a constant K or H is used as source data, the value is converted to floating point

before the addition operation.

c) The addition is mathematically correct: i.e., 2.3456×10 2 +(-5.6×10 -1)=2.34×10 2

d) The same device may be used as a source and as the destination. If this is the case

then, on continuous operation of the DEADD instruction, the result of the previous

operation will be used as a new source value and a new result calculated.

This will happen every program scan unless the pulse modifier or an interlock program is

used.

e) If the result of the calculation is zero“0”then the zero flag, M8020 is set ON.

If the result of the calculation is larger than the largest floating point number then the carry

flag, M8021 is set ON and the result is set to the largest value.

If the result of the calculation is smaller than the smallest floating point number then the

borrow flag, M8022 is set ON and the result is set to the smallest value.

5.10.6 EAUB (FNC 121)

Operation:

The floating point value of S2is

subtracted from the floating point

value of S1and the result stored in

destination device D.

Points to note:

All points of the EADD instruction apply, except that a subtraction is performed.

206

5.10.7 EMUL (FNC 122)

Operation:

The floating point value of S1is

multiplied with the floating point

value of S2. The result of the

multiplication is stored at D as a

floating point value.

Points to note:

Point a, b, c and d of the EADD instruction apply, except that a multiplication is performed.

5.10.8 EDIV (FNC 123)

Operation:

The floating point value of S1is

divided by the floating point value

of S2. The result of the division is

stored in D as a floating point

value. No remainder is

calculated.

207

Points to note:

Points a, b, c, d of the EADD instruction apply, except that a division is performed.

• If S2is 0 (zero) then a divide by zero error occurs and the operation fails.

5.10.9 ESQR (FNC 127)

Operation:

A square root is performed on the

floating point value of Sand the

result is stored in D.

Points to note:

Points a, b, c, d of the EADD instruction apply, except that a square root is performed.

• If S is negative then an error occurs and error flag M8067 is set ON.

5.10.10 INT (FNC 129)

Operation:

The floating point value of S is

rounded down to the nearest

integer value and stored in normal

208

binary format in D.

Points to note:

a) The source data is always a double (32 bit) word; a floating point value.

For single word (16 bit) operation the destination is a 16 bit value.

For double word (32 bit) operation the destination is a 32 bit value.

b) This instruction is the inverse of the FLT instruction.

c) If the result is 0 then the zero flag M8020 is set ON.

If the source data is not a whole number it must be rounded down. In this case the borrow

flag M8021 is set ON to indicate a rounded value.

If the resulting integer value is outside the valid range for the destination device then an

overflow occurs. In this case the carry flag M8022 is set on to indicate overflow.

Note: If overflow occurs, the value in the destination device will not be valid.

Applied Instructions:

209

Symbols list:

210

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D1,S3or for lists/tabled devices D3+0,S+9etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number,

i.e.

positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆- An instruction operating in 16 bit mode, where☆☆☆�identifies the instruction

mnemonic.

☆☆☆P - A 16 bit mode instruction modified to use pulse (single) operation.

D☆☆☆�- An instruction modified to operate in 32 bit operation.

D☆☆☆P - A 32 bit mode instruction modified to use pulse (single) operation.

 A repetitive instruction which will change the destination value on every scan

unless modified by the pulse function.

An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

will have no effect to the value of the operand.

5.11.1 SIN (FNC 130)

Contents:

This instruction performs the

mathematical SIN operation on

the floating point value in S. The

result is stored in D.

Points to note:

a) The instruction must use the double word format: i.e., DSIN or DSINP. All source and

destination data will be double word; i.e., uses two consecutive data registers to store the

data (32 bits).

211

The source data is regarded as being in floating point format and the destination is also in

floating point format.

b) The source value must be an angle between 0 to 360 degrees in radians; i.e.,

0° ≤ S< 360°

Radian Angles

Below is an program example of how to calculate angles in radians using floating point.

K45 degrees to D0

Convert D0 to float in D4,D5

K90 degrees to D0

Calculateπin radians (π/180)

Store as a float in D20,D21

Calculate angle in radians in D30,D31

(deg° × π/180 = rads)

Calculate SIN of angle in D100

5.11.2 COS (FNC 131)

Contents:

This instruction performs the

mathematical COS operation on

the floating point value in S. The

result is stored in D.

Points to note:

All the points for the SIN instruction apply, except that COS is calculated.

212

5.11.3 TAN (FNC 132)

Contents:

This instruction performs the

mathematical TAN operation on

the floating point value in S. The

result is stored in D.

Points to note:

All the points for the SIN instruction apply, except that COS is calculated.

213

Applied Instructions:

214

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D1,S3or for lists/tabled devices D3+0,S+9etc. MSB - Most Significant

Bit, sometimes used to indicate the mathematical sign of a number, i.e. positive = 0, and

negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆- An instruction operating in 16 bit mode, where ☆☆☆identifies the instruction

mnemonic.

☆☆☆P - A 16 bit mode instruction modified to use pulse (single) operation.

D☆☆☆- An instruction modified to operate in 32 bit operation.

D☆☆☆�P - A 32 bit mode instruction modified to use pulse (single) operation

A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.

 An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

will have no effect to the value of the operand.

5.12.1 SWAP (FNC 147)

Contents:

The upper byte and the lower

byte of the source device are

swapped.

This instruction is equivalent to

operation 2 of FNC 17 XCH

.

215

Points to note:

a) In single word (16 bit) operation the upper and lower byte of the source device are

exchanged.

b) In double word (32 bit) operation the upper and lower byte of each or the two 16 bit

devices are exchanged.

Result of DSWAP(P) D10:

c) If the operation of this instruction is allowed to execute each scan, then the value of the

source device will swap back to its original value every other scan. The use of the pulse

modifier or an interlock program is recommended.

216

Applied Instructions:

217

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D1,S3or for lists/tabled devices D3+0,S+9etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number,

i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆�- An instruction operating in 16 bit mode, where ☆☆☆identifies the instruction

mnemonic.

☆☆☆P - A 16 bit mode instruction modified to use pulse (single) operation.

D☆☆☆- An instruction modified to operate in 32 bit operation.

D☆☆☆�P - A 32 bit mode instruction modified to use pulse (single) operation

A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.

 An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

will have no effect to the value of the operand.

5.13.1 Cautions when using Positioning Instructions

The following positioning instructions are application instructions that can be used many

times in a program.

When designing a program, make sure to follow the cautions outlined below with regard to

instruction drive timing.

FNC 156 (ZRN)

FNC 157 (PLSV)

FNC 158 (DRVI)

FNC 159 (DRVA)

• Do not drive positioning instructions which use the same output relay (Y000 or Y001) at

the same time. If such instructions are driven at the same time, they will be treated as

double coils, and not function correctly.

• Before setting a drive contact ON after is has been set to OFF be sure that the following

condition is satisfied;

One or more operation cycles of the „pulse output monitor (Y000:M8147, Y001:M8148)‟

must occur after the positioning instruction is turned OFF, before it can be used again.

218

This condition must be met, as one or more OFF operations are required for the red riving

of a positioning instruction.

If it is not met, and „operation error‟ will occur during the instruction execution.

• Use the Step Ladder Program to correctly set up positioning instructions in

conformance to the cautions above.

Caution when using Positioning instructions with FNC 57 (PLSY) & FNC 59 (PLSR)

• Pulse output instructions FNC 57 (PLSY) & FNC 59 (PLSR) use output points Y000 and

Y001 in the same way as the positioning instructions described above.

• If a positioning and a pulse output instruction are used in the same operation, the

conflicting instructions will be treated as double coils and not function correctly.

• It is recommended to use a FNC 158 (DRVI) instruction in place of either a FNC 57

(PLSY) or FNC 59 (PLSR) instruction to avoid incorrect operation when pulse outputs are

required while positioning instructions are being used.

Output terminals Y000 and Y001 are high speed response type

Voltage range : 5 to 24V DC

Current range : 10 to 100mA

Output frequency : 100kHz or less

5.13.2 Pulse train settings

When a positioning operation is executed from the PLC, the pulse output signal has the

„Pulse train + Sign‟ format during control, as shown in the figure below.

Make sure to set the pulse train input mode on the servo amplifier or stepper motor as

follows;

Pulse train input mode: Pulse train + Sign

Pulse train logic: negative logic

219

5.13.3 Devices related to positioning

Device No. Data

size

Initial

value

Description

D8140 Lower 32 bit 0 Operates as current value registers of positioning instruction

output

to Y000

For FNC 157 (PLSV), FNC 158 (DRVI), FNC 159 (DRVA)

instructions, current value increases or decreases in accordance

with direction of rotation.

Although FNC 57 (PLSY) and FNC 59 (PLSR) instructions use

the same current value registers, the current value represents the

accumulating total number of output pulses during instruction

execution.

D8141 Upper

D8142 Lower 32 bit 0 Operates as current value registers of positioning instruction

output

to Y001

For FNC 157 (PLSV), FNC 158 (DRVI), FNC 159 (DRVA)

instructions, current value increases or decreases in accordance

with direction of rotation.

Although FNC 57 (PLSY) and FNC 59 (PLSR) instructions use

the same current value registers, the current value represents the

accumulating total number of output pulses during instruction

execution.

D8143 Upper

D8145 16 bit 0 Bias speed when FNC 156 (ZRN), FNC 158 (DRVI), FNC 159

(DRVA) instructions are executed

Set range: 1/10 or less of maximum speed (D8146 & D8147) If

the current value exceeds this range, it is automatically set to 1/10

of the maximum speed during operation.

D8146 Lower 32 bit 100,000 Maximum speed when FNC 156 (ZRN), FNC 158 (DRVI), FNC

159 (DRVA) instructions are executed.

Set range 10 to 100,000 (Hz).

D8147 Upper

D8148 16 bit 100 Acceleration/Deceleration time in which maximum speed (D8146

& D8147) is achieved from bias speed (D8145) when FNC 156

(ZRN), FNC 158 (DRVI), FNC 159 (DRVA) instructions are

executed.

Setrange50to5,000(ms)

220

5.13.4 Servo Wiring Example

Example of connection to a BRASILTEC MR-J2-*A servo.

Note. The PLC required for this connection is a SINK Transistor output type.

*1 Connect to programmable controller when absolute position detection is required.

*2 Ports CN1A, CN1B, CN2 & CN3 are the same shape. Do not confuse them.

*3 Connect a limit switch to the servo amplifier.

*4 ONLY use a transistor output type PLC.

5.13.5 Example Program

The following example program for forward/reverse operation uses the I/O assignment

shown in section 5.13.4 Servo Wiring Example.

During operation positioning is performed using the absolute position method shown

below.

221

In this example the actual output frequency for the first step, acceleration, and the last

step, deceleration, can be obtained using the following expression.

Step Ladder program.

*1 When the maximum speed or Acceleration/deceleration do not have to be changed

from their initial values, programming is not required.

222

*2 The maximum size of a JOG command is 999,999 pulses, as this is the maximum

number of output pulses for a FNC 158 (DRVI) instruction. If a greater distance is required

execute more than one JOG command.

223

224

*3 The instruction drive timing is delayed by one operation cycle to prevent simultaneous

driving of positioning instructions.

5.13.6 ABS (FNC 155)

Operation:

This instruction reads the

absolute position data when a

BRASILTEC servo motor, MR-H

or MR-J2, equipped with

absolute positioning function is connected. [S] is the first of three inputs used for

225

communication flags (see drawing below), [D1]is the first of three communication outputs

and [D 2] is the data destination register.

Points to note:

a)This instruction is 32-Bit. Be sure to input as “DABS”

b)Read starts when the instruction drive contact turns ON. When the read is complete, the

execution complete flag M8029 is energized.

If the instruction drive contact is turned OFF during read, read is aborted.

c)When designing a system, set the servo amplifier to be ON earlier than the power of the

PLC, or so that they are both powered ON at the same time.

d)The device [D2] to which the absolute value is read, can be set within a word device

range.

However, the absolute value should be transferred at some point to the correct registers

(D8141 & D8140)

e)The DABS instruction drive contact uses an input which is always ON, even after the

absolute value is read.

If the instruction drive contact turns OFF after the read is complete, the servo ON (SON)

signal will turn OFF and the operation disabled.

f)Even if the servo motor is equipped with an absolute position detection function, it is

good practice to execute a zero return operation during initial system set up.

5.13.7 ZRN (FNC 156)

226

Contents:

When executing incremental

or absolute positioning, the

PLC stores the current position

values which increase or

decrease during operation.

Using these values, the PLC always knows the machine position. However when the

power to the PLC is turned off, this data is lost. To cope with this the machine should

return to the zero point when the power is turned ON, or during initial set up, to teach the

zero position. [S 1] is the Zero Return Speed, [S 2] is the Creep Speed, [S 3] is the Near

Point Signal, and [D] is the Pulse Output Designation.

Points to note:

a)Users may specify zero return speed [S1] as, 16-bit 10 to 32,767Hz or 32-bit 10 to

100kHz.

b)Users may specify the creep speed [S2 } of 10 to 32,767Hz

c)If any device other than an input relay (X) is specified for the Near point signal [S3] it will

be affected by the operation cycle of the PLC and the dispersion of the zero point may be

large.

d)Only Y000 or Y001 can be used for the pulse output [D].

Because of the nature of the high speed output, transistor type output units should be

used with this instruction. Relay type outputs will suffer a greatly reduced life, and will

cause false outputs to occur.

To ensure a „clean‟ output signal when using transistor type units, the load current should

be 200mA or higher with the Series. The load current should be 10 - 100mA with the /

1N Series. It may be necessary to use „pull up‟ resistors.

e)If M8140 is set to ON, the clear signal is sent to the servo motor when the return to zero

point is complete.

f)Related device numbers.

D8141 (upper digit) & D8140 (lower digit) : Current value register of Y000 (32-bit)

D8143 (upper digit) & D8142 (lower digit) : Current value register of Y001 (32-bit)

D8147 (upper digit) & D8146 (lower digit) : Maximum speed when FNC156, FNC158 or

FNC159 are executed 100~100,000Hz.

D8148 : Acceleration/Deceleration time adopted when FNC156, FNC158 or FNC159 are

executed.

M8145 : Y000 pulse output stop (immediate)

M8146 : Y001 pulse output stop (immediate)

227

M8147 : Y000 pulse output monitor (BUS/READY)

M8148 : Y001 pulse output monitor (BUS/READY)

g)When a BRASILTEC MR-H or MR-J2 servo amplifier equipped with absolute position

detection function is used, the current position of the servo can be read by FNC 155

(ABS).

• Dog search function is not supported. Start zero return from the front side of the Near

point signal.

• Attention should be paid to the instruction drive timing.

5.13.8 PLSV(FNC157)

Operation:

This is a variable speed

output pulse instruction, with a

rotation direction output.

[S] is the Pulse Frequency, [D

1] is the Pulse Output

Designation, and [D2] is the

Rotation Direction Signal.

Points to note:

a)Users may use output pulse frequencies [S1] of, 16-bit 10 to 32,767Hz or 32-bit 10 to

100kHz.

b)Only Y000 or Y001 can be used for the pulse output [D1].

Because of the nature of the high speed output, transistor type output units should be

used with this instruction. Relay type outputs will suffer a greatly reduced life, and will

cause false outputs to occur.

To ensure a „clean‟ output signal when using transistor type units, the load current should

be 200mA or higher with the Series. The load current should be 10 - 100mA with the /

1N Series. It may be necessary to use „pull up‟ resistors.

c)Rotation direction signal output [D2} operated as follows: if [D 2] = OFF, rotation =

negative, if [D 2] = ON, rotation = positive.

d)The pulse frequency [S] can be changed even when pulses are being output.

228

e)Acceleration/deceleration are not performed at start/stop. If cushion start/stop is

required, increase or decrease the output pulse frequency [S] using the FNC67 RAMP

instruction.

f)If the instruction drive contact turns off while pulses are output, the machine stops

without deceleration

g)Once the instruction drive contact is off, re-drive of the instruction is not possible while

the pulse output flag (Y000 : [M8147] Y001 : [M8148]) is ON.

h)The normal or reverse direction is specified by the positive or negative sign of the output

pulse frequency [S]

i)Related device numbers.

D8141 (upper digit) & D8140 (lower digit) : Current value register of Y000 (32-bit)

D8143 (upper digit) & D8142 (lower digit) : Current value register of Y001 (32-bit)

M8145 : Y000 pulse output stop (immediate)

M8146 : Y001 pulse output stop (immediate)

M8147 : Y000 pulse output monitor (BUS/READY)

M8148 : Y001 pulse output monitor (BUS/READY)

• Attention should be paid to the instruction drive timing.

5.13.9 DRVI (FNC 158)

Operation:

This instruction is for single

speed positioning in the form of

incremental movements. [S 1]

is the Number of Pulses, [S 2]is

the Pulse Output Frequency, [D1] is the Pulse Output Designation, and [DN 2]is the

Rotation Direction Signal.

Points to note:

a)The maximum number of pulses [S1] available are: 16-bit -32,768 to 32,767 pulses or

32-bit

-999,999 to 999,999 pulses.

b)Users may use output pulse frequencies [S2], 16-bit 10 to 32,767Hz or 32-bit 10 to

229

100kHz.

c)Only Y000 or Y001 can be used for the pulse output [D 1].

Because of the nature of the high speed output, transistor type output units should be

used with this instruction. Relay type outputs will suffer a greatly reduced life, and will

cause false outputs to occur.

To ensure a „clean‟ output signal when using transistor type units, the load current should

be 200mA or higher with the Series. The load current should be 10 - 100mA with the /

1N Series. It may be necessary to use „pull up‟ resistors.

d)Rotation direction signal output [D2] operated as follows: if [D 2] = OFF, rotation =

negative, if [D 2] = ON, rotation = positive.

e)If the contents of an operand are changed while the instruction is executed, it is not

reflected on the operation. The new contents become effective when the instruction is

next driven.

f)If the instruction drive contact turns off while the instruction is being executed, the

machine decelerates and stops. At this time the execution complete flag M8029 does not

turn ON.

g)Once the instruction drive contact is off, re-drive of the instruction is not possible while

the pulse output flag (Y000 : [M8147], Y001 : [M8148]) is ON.

h)For operation in the incremental drive method, the travel distance from the current

position is specified with either a positive or a negative symbol.

i)The minimum value of output pulse frequency which can be actually used is determined

by the following equation.

f)Related device numbers.

D8145 : Bias speed adopted when either FNC158, DRVI or FNC159, DRVA are executed

D8147 (upper digit) & D8146 (lower digit) : Maximum speed when FNC156, FNC158 or

FNC159 are executed 100~100,000Hz.

D8148 : Acceleration/Deceleration time adopted when FNC156, FNC158 or FNC159 are

executed.

M8145 : Y000 pulse output stop (immediate)

M8146 : Y001 pulse output stop (immediate)

M8147 : Y000 pulse output monitor (BUS/READY)

M8148 : Y001 pulse output monitor (BUS/READY)

• Attention should be paid to the instruction drive timing.

230

5.13.10 DRVA(FNC 159)

Operation:

This instruction is for single

speed positioning using a zero

home point and absolute

measurements. [S 1] is the

Number of Pulses, [S 2] is the Output

Frequency, [D1] is the Pulse Output Designations, and [D 2] is the Rotation Direction

Signal.

Points to note:

a)The target position for absolute positioning [S1] can be: 16-bit -32,768 to 32,767 pulses

or 32-bit -999,999 to 999,999 pulses.

b)Users may use output pulse frequencies [S2], 16-bit 10 to 32,767Hz or 32-bit 10 to

100kHz.

c)Only Y000 or Y001 can be used for the pulse output [D 1].

Because of the nature of the high speed output, transistor type output units should be

used with this instruction. Relay type outputs will suffer a greatly reduced life, and will

cause false outputs to occur.

To ensure a „clean‟ output signal when using transistor type units, the load current should

be 200mA or higher with the Series. The load current should be 10 - 100mA with the /

HCA2 Series. It may be necessary to use „pull up‟ resistors.

d)Rotation direction signal output [D2] operated as follows: if [D 2] = OFF, rotation =

negative, if [D 2] = ON, rotation = positive.

e)If the contents of an operand are changed while the instruction is executed, it is not

reflected on the operation. The new contents become effective when the instruction is

next driven.

f)If the instruction drive contact turns off while the instruction is being executed, the

machine

decelerates and stops. At this time the execution complete flag M8029 does not turn ON.

231

g)Once the instruction drive contact is off, re-drive of the instruction is not possible while

the pulse output flag (Y000 : [M8147], Y001 : [M8148]) is ON.

h)For operation in the absolute drive method, the travel distance from the zero point is

specified.

i)The minimum value of output pulse frequency which can be actually used is determined

by the following equation

f)Related device numbers.

D8145 : Bias speed adopted when either FNC158, DRVI or FNC159, DRVA are executed

D8147 (upper digit) & D8146 (lower digit) : Maximum speed when FNC156, FNC158 or

FNC159 are executed 100~100,000Hz.

D8148 : Acceleration/Deceleration time adopted when FNC156, FNC158 or FNC159 are

executed.

M8145 : Y000 pulse output stop (immediate)

M8146 : Y001 pulse output stop (immediate)

M8147 : Y000 pulse output monitor (BUS/READY)

M8148 : Y001 pulse output monitor (BUS/READY)

• Attention should be paid to the instruction drive timing.

232

Applied Instructions:

233

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D1,S3or for lists/tabled devices D3+0,S+9etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number,

i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆�- An instruction operating in 16 bit mode, where ☆☆☆�identifies the instruction

mnemonic.

☆☆☆�P - A 16 bit mode instruction modified to use pulse (single) operation.

D☆☆☆- An instruction modified to operate in 32 bit operation.

D☆☆☆P - A 32 bit mode instruction modified to use pulse (single) operation.

A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.

An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

234

will have no effect to the value of the operand.

5.14.1 TCMP (FNC 160)

Contents:

S1,S2and S3represent hours,

minutes and seconds respectively.

This time is compared to the time

value in the 3 data devices

specified by the head address S.

The result is indicated in the 3 bit

devices specified by the head

address D.

The bit devices in D indicate the following:

D+0issetON,whenthetimeinSislessthanthetimeinS1,S2and S3.

D+1is set ON, when the time in S is equal to the time in S1,S2and S3.

D+2is set ON, when the time in S is greater than the time in S1,S2and S3.

Points to note:

a) The status of the destination devices is kept, even if the TCMP instruction is

deactivated.

b) The comparison is based on the time value specified in the source devices.

- The valid range of values for S1and S+0is0to23(Hours).

- The valid range of values for S2and S+1is0to59(Minutes).

- The valid range of values for S3and S+2is0to59(Seconds).

c) The current time of the real time clock can be compared by specifying D8015 (Hours),

D8014 (Minutes) and D8013 (Seconds) as the devices for S1,S2and S3respectively.

235

5.14.2 TZCP (FNC 161)

Contents:

S1,S2 and S represent time

values. Each specifying the head

address of 3 data devices. S is

compared to the time period

defined by S1 and S2. The result

is indicated in the 3 bit devices

specified by the head address D.

The bit devices in D indicate the following:

D+0is set ON, when the time in S is less than the times in S1and S2.

D+1is set ON, when the time in S is between the times in S1and S2.

D+2is set ON, when the time in S is greater than the times in S1and S2.

Points to note:

a) The status of the destination devices is kept, even if the TCMP instruction is

deactivated.

b) The comparison is based on the time value specified in the source devices.

- The valid range of values for S1and S+0is0to23(Hours).

- The valid range of values for S2and S+1is0to59(Minutes).

- The valid range of values for S3and S+2is0to59(Seconds).

5.14.3 TADD (FNC 162)

236

Contents:

Each of S1,S2and D specify the

head address of 3 data devices to

be used a time value.

ThetimevalueinS1is added to the

time value in S2, the result is

stored to D as a new time value.

Points to note:

a) The addition is performed according to standard time values. Hours, minutes and

seconds are kept within correct limits. Any overflow is correctly processed.

b) If the addition of the two times results in a value greater than 24 hours, the value of the

result is the time remaining above 24 hours.

When this happens the carry flag M8022 is set ON.

c) If the addition of the two times results in a value of zero (0:00:00: 0 hours, 0 minutes, 0

seconds) then the zero flag M8020 is set ON.

d) The same device may be used as a source (S1 or S2) and destination device. In this

case the addition is continually executed; the destination value changing each program

scan. To prevent this from happening, use the pulse modifier or an interlock program.

237

5.14.4 TSUB (FNC 163)

Contents:

Each of S1,S2and D specify the

head address of 3 data devices to

be used a time value.

The time value in S1is subtracted

from the time

valueinS2, the result is stored to D as a new time value.

Points to note:

a) The subtraction is performed according to standard time values. Hours, minutes and

seconds are kept within correct limits. Any underflow is correctly processed.

b) If the subtraction of the two times results in a value less than 00:00:00 hours, the value

of the result is the time remaining below 00:00:00 hours.

When this happens the borrow flag M8021 is set ON.

c) If the subtraction of the two times results in a value of zero (00:00:00 hours) then the

zero flag M8020 is set ON.

d) The same device may be used as a source (S1 or S2) and destination device. In this

case the subtraction is continually executed; the destination value changing each program

scan. To prevent this from happening, use the pulse modifier or an interlock program.

238

5.14.5 TRD (FNC 166)

Contents:

The current time and date of the real time

clock are read and stored in the 7 data

devices specified by the head address D.

The 7 devices are set as follows:

Points to note:

The year is read as a two digit number. This can be change to a 4 digit number by setting

D8018 to 2000 during the first program scan; see following program extract.

If this is done then the clock year should not be used during the first scan as it will

be a two digit number before the instruction and a value of 2000 after the instruction until

the END instruction executes. After the first scan the year is read and written as a 4 digit

number.

239

5.14.6 TWR (FNC 167)

Contents:

The 7 data devices specified with

the head address S are used to set

a new current value of the real

time clock.

The seven devices

Points to note:

This instruction removes the need to use M8015 during real time clock setting. When

setting the time it is a good idea to set the source data to a time a number of minutes

ahead and then drive the instruction when the real time reaches this value.

5.14.7 Hour (FNC 169)

240

Operation 1: 16 bit

instruction

[S] = Period of time before [D

2] turns on (Hrs) [D 1] =

Current value in Hours [D

1]+1 = Current value, if less

than 1 hour, time is specified

in seconds. [D 2] = Alarm output destination, turns on when [D 1] exceeds [S] In the

above example, [D 2] turns on at 300 hours and 1 second.

Operation 2: 32 bit instruction

[S] = Period of time in which [D

2] turns on (Hrs) [D 1] =

Current value in Hours [D 1]+2

= Current value, if less than 1

hour. In seconds [D 2] = Alarm output destination, when [D 1] exceeds [S] In the above

example, [D 2] turns on at 4000 hours and 1 second.

Points to note:

a)In order to continuously use the current value data, even after a power OFF and ON,

specify a data register which is backed up against power interruption.

b)The hour meter will continue operation even after the alarm output [D2] turns ON.

Operation will stop when the value of [D1] reaches the maximum for the specified 16 or

32 bit operation.

If continuous operation id required, clear the value stored in [D 1]to[D1]+1 (16-bit) and [D

1]to [D 1]+2 (32-bit).

Applied Instructions:

241

Symbols list:

242

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D1,S3or for lists/tabled devices D3+0,S+9etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number,

i.e. positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆- An instruction operating in 16 bit mode, where☆☆☆identifies the instruction

mnemonic.

☆☆☆�P - A 16 bit mode instruction modified to use pulse (single) operation.

D�☆☆☆�- An instruction modified to operate in 32 bit operation.

D�☆☆☆P - A 32 bit mode instruction modified to use pulse (single) operation

 A repetitive instruction which will change the destination value on every scan

unless modified by the pulse function.

An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

will have no effect to the value of the operand.

5.15.1 GRY (FNC 170)

Operation:

The binary integer value in S is

converted to the GRAY CODE

equivalent and stored at D.

Points to Note:

The nature of gray code numbers allows numeric values to be quickly output without the

need for a strobing signal. For example, if the source data is continually incremented, the

243

new output data can be set each program scan.

5.15.2 GBIN (FNC 171)

Operation:

The GRAY CODE value in S is

converted to the normal binary

equivalent and stored at D.

Points to Note:

This instruction can be used to read the value from a gray code encoder.

If the source is set to inputs X0 to X17 it is possible to speed up the reading time by

adjusting the refresh filter with FNC 51 REFF.

5.15.3 RD3A (FNC 176)

Operation:

 [M 1] = Special block number, K0

to K7

[M 2] = Analog input channel

number, K1/K21 or K2/K22 [D] =

244

Read data

5.15.4 WR3A (FNC 177)

Operation:

This instruction writes data to

the [M 1] = Special block

number, K0 to K7

[M 2] = Analog output channel

number, K1/K21 or K22 [S] =

Write data

245

Applied Instructions:

246

Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D1,S3or for lists/tabled devices D3+0,S+9etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number,

i.e.

positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆- An instruction operating in 16 bit mode, where☆☆☆identifies the instruction

mnemonic.

☆☆☆P - A 16 bit mode instruction modified to use pulse (single) operation.

D☆☆☆- An instruction modified to operate in 32 bit operation.

D☆☆☆�- A 32 bit mode instruction modified to use pulse (single) operation

A repetitive instruction which will change the destination value on every scan unless

modified by the pulse function.

An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

will have no effect to the value of the operand.

5.16.1 EXTR (FNC 180)

Operation:

The value of S stored in the

extension ROM (K0 to K32767)

defines the function number and

the instruction. SD1,SD2 and

247

SD3 are parameters of the application instruction. S or D varies depending on the function

number. The type of operation (16 bit, 32 bit, pulse) is determined from the instruction

number.

Points to Note:

In some function numbers, the parameters SD1 to SD3 may not be required due to

specifications. In such a case K0 should be written in the program. K0 is ignored in the

internal processing of the PLC.

5.16.1.1 Inverter Communication

External ROM cassette functions 10 to 13 are for reading and writing data to/from an

inverter using signal instructions. These functions are available when an BD is attached to

the PLC, for communication with a BRASILTEC A500/E500/S500 series inverter.

5.16.1.1.1 Restrictions

Six digit commands that are supported in the E500 and S500 series inverters are not

supported by the EXTR function.

For HC-PCS/WIN-E:

1) Select “Option”-“Serial setting (Parameter)”

2) Click “Yes”

3) Set “Serial setting (Parameters)”as shown below

a) Set these parameters as

show on the left.

DO NOT select “Link”

b) Select either 19200, 9600

or 4800.

This value should be the same

as set in the parameter of the

inverter.

c) These parameters do not

affect communication with the

inverter.

248

For GX Developer

1) Select “Parameters”

2) Select “PLC Parameter”

3) Select “PLC System (2)”and set as shown below

a) Set these parameters as show on the left.

DO NOT select “Link”

b) Select either 19200, 9600 or 4800. This value should be the same as set in the inverter.

c) These parameters do not affect communication with the inverter.

5.16.1.1.3 Inverter settings and PLC communication settings

Inverter communication specification and application to PLC

Note:

Some of the specifications above are fixed in the PLC but variable in the inverter. This has

been done to ease set up and reduce any possible problems during configuration.

For more information on the inverter, please see the appropriate inverter manual.

A500 series settings

Parameter

number

Description Set value Contents Setting for comms to PLC

117 Station No. 0~31 Corresponds to the

station No.

specified from the PU

connector.

If two or more inverters,

set the

station No. at each

inverter

Align setting with station

number

in the sequence program

249

118 Communication

speed

48 4800bps Normally select 192.

If high speed processing in

PLC

use96or48

96 9600bps

192 19200bps

119 Stop bit length /

Data bit length

0

8 data bits/1stop bit Select 10

1

8 data bits/2stop bits

10 7data bits/1stop bit

11 7data bits/2stop bits

120 Parity check 0 Absent Select 2

1 Present (Odd)

2 Present (Even)

121 Number of

communication

retries

0,1~10 Set number of retries

after data receive error.

If this value is exceeded,

inverter comes to alarm

stop

During trial run select 9999 and

perform adjustment.

During actual operation select

value in accordance with

system

specifications

9999

(65535)

If a comms error occurs,

inverter will not come to

alarm stop.

At this time inverter can

be

coasted to stop by

MRSorRES

input. During comms.

error, the LF signal is

output to the open

collector output. Allocate

one terminal from

Pr.190-195

122* Communication

check time

interval

0 Comms not executed While default value 0 is

selected,

communications are disabled.

Select 9999, perform

adjustment,

then select optimal value

0.1~999.8 Set comms check time

interval.

If a no-communication

state

persists for longer than

the set

time, inverter comes to

alarm

stop

250

9999 Comms check

suspended

123 Waiting time

setting

0~150 Set waiting time between

data

transmission and

response

Select 9999

9999 Waiting time set by

communication data

124 CR,LF

selection

0 CR & LF instructions

absent

Select 1

1 CR instruction present

2 CR & LF instructions

present

342 E
2
 PROM write

selection

0 Parameter write from

computer

to EEPROM

Select either value according

to

system specifications

1 Parameter write from

computer

to RAM

*A500 + A5NR settings

Parameter

number

Name Setting range Setting

increment

Inverter

station

No.

Setting for comms to PLC

331 Inverter

station

No.

0~31 1 0 Align setting with station number

in the sequence program

332 Comms

speed

3,6,12,24,48,9

6,192

1 96 Normally select 192. If high

speed processing in PLC use 96

or 48

333 Stop bit

length

0,1(8bit)

10,11 (7bit)

1 1 Select10

334 Parity check

yes/no

0,1,2 1 2 Select 2

335 Comms

retry

count

0~10, 9999 1 1 During trial run select 9999 and

perform adjustment. During

actual operation

select value in accordance with

system specifications

336 Comms

check

time interval

0~999.8, 9999 0.1 1

337*

Wait time

setting

0~150ms,

9999

1ms 9999 While default value 0 is selected,

communications are disabled.

251

Select 9999, perform adjustment,

then select optimal value. See

Note below.

338 Operation

command

write

0,1 1 0 Select either value in accordance

to system

specifications

339 Speed

command

write

0,1 1 0 Select either value in accordance

to system

specifications

340 Link start

mode

selection

0,1,2 1 0 Select either value in accordance

to system

specifications

341 CR/LF

yes/no

selection

0,1,2 1 1 Select 1 CR only

342 EEPROM

write

selection

0: write to

EEPROM

1: write to

RAM

1 0 Select either value in accordance

to system

specifications

*Note:

The time settings should be set as low as possible to avoid problems during a

communication failure. The inverter will continue to run during the set time which may

cause equipment damage or raise a safety issue. Please turn the inverter Off when

communication problems are encountered.

E500 series settings

Parameter

number

Description Set value Contents Setting for comms to

PLC

117 Station No. 0~31 Corresponds to the station

No.

specified from the PU

connector.

If two or more inverters, set

the

station No. at each inverter

Align setting with station

number in the sequence

program

118 Communication

speed

48 4800bps Normally select 192.

If high speed processing

in PLC

use96or48

96 9600bps

192 19200bps

119 Stop bit length /

Data bit length

0 8data bits/1stop bit Select 10

1 8data bits/2stop bits

252

10 7data bits/1stop bit

11 7data bits/2stop bits

120 Parity check 0 Absent Select 2

 1 Present (Odd)

 2 Present (Even)

121 Number of

communication

retries

0,1~10 Set number of retries after

data receive error.

If this value is exceeded,

inverter comes to alarm stop

During trial run select

9999 and

perform adjustment.

During actual operation

select

value in accordance with

system

specifications

9999

(65535)

If a comms error occurs,

inverter will not come to

alarm

stop. At this time inverter

can be

coasted to stop by MRS or

RES

input. During comms. error,

the LF

signal is output to the open

collector output. Allocate

one

terminal from Pr.190-192

122* Communication

check time

interval

0 Comms not executed While default value 0 is

selected,

communications are

disabled.

Select 9999, perform

adjustment, then select

optimal value

0.1~999.8 Set comms check time

interval.

If a no-communication state

persists for longer than the

set

time, inverter comes to

alarm stop.

9999 Comms check suspended

123 Waiting time

setting

0~150 Set waiting time between

data

transmission and response

Select 9999

Select 9999

9999 Waiting time set by

communication data

124 CR,LF

selection

0 CR & LF instructions absent Select 1

1 CR instruction present

2 CR & LF instructions

present

253

S500 series settings

Parameter

number

Description Set value Contents Setting for comms to

PLC

n1 Station No. 0~31 Corresponds to the station

No.

specified from the PU

connector.

If two or more inverters, set

the

station No. at each inverter

Align setting with station

number in the sequence

program

n2 Communication

speed

48 4800bps Normally select 192.

If high speed processing

in PLC

use96or48

96 9600bps

192 19200bps

n3 Stop bit length /

Data bit length

0 8data bits/1stop bit Select 10

1 8data bits/2stop bits

10 7data bits/1stop bit

11 7data bits/2stop bits

n4 Parity check 0 Absent Select 2

1 Present (Odd)

2 Present (Even)

n5 Number of

communication

retries

0,1~10 Set number of retries after

data receive error.

If this value is exceeded,

inverter comes to alarm

stop

9999

(65535)

If a comms error occurs,

inverter will not come to

alarm stop.

At this time inverter can be

coasted to stop by MRS or

RES input.

During comms. error, the LF

signal is output to the open

collector output. Allocate

one

terminal from Pr.64-65

During trial run select

9999 and

perform adjustment.

During actual operation

select

value in accordance with

system specifications

254

n6* Communication

check time

interval

0 Comms not executed While default value 0 is

selected,

communications are

disabled.

Select 9999, perform

adjustment, then select

optimal value

0.1~999.8 et comms check time

interval.

If a no-communication state

persists for longer than the

set

time, inverter comes to

alarm stop

9999 Comms check suspended

n7 Waiting time

setting

0~150 Set waiting time between

data

transmission and response

Select 9999

9999 Waiting time set by

communication data

n11 CR,LF

selection

0 CR & LF instructions absent Select 1

1 CR instruction present

2 CR & LF instructions

present

Example of transmission format when data is written from PLC to inverter

H30+H36+H38+H30+H30+H31+H32+H33+H34=H1C8

C=H43 8=H38

5.16.1.1.4 EXTR K10 - Monitoring operations (Inverter to PLC)

255

Details of S3

Note:

The shaded area is supported but is executed by EXTR K12.

5.16.1.1.5 EXTR K11 - Control operations (PLC to Inverter)

256

Details of S3

Note:

The shaded areas are re-written in the internal processing when EXTR K13 is executed.

5.16.1.1.6 Relationship between EXTR K10/K11 and A500/E500/S500 series

The page below is taken from section 4.2.41, paragraph 5“Instructions for the program”

<setting items and set data> in the FR A500 series instruction manual, IB(NA)-66790-G

The following example reads the Output Frequency from Inverter station #1 and stores

this value to D100.

257

The following example writes the Run Command parameters to Inverter Station #1.

258

Note: As parameters 9,10 11 and 12 are used for EXTR K12/13, DO NOT use them with

EXTR K11/ K12

5.16.1.1.7 EXTR K12 - Parameter read (Inverter to PLC)

259

Link parameters are automatically re-written in accordance with the parameter No

5.16.1.1.8 EXTR K13 - Parameter write (PLC to Inverter)

Link parameters are automatically re-written in accordance with the parameter No.

5.16.1.1.9 Relationship between EXTR K12/K13 and A500/E500/S500 series

The following page is from

the Data COD list of the

FR A500 series instruction

manual, IB(NA)-66790-G.

 The following example

displays how to read the

parameter from the inverter.

The following example displays how to write the parameter to the inverter.

The following example reads the Base

Frequency from the 2nd inverter station

and stores this value to D100

The following example writes K5600 to

the Base Frequency in the 2nd inverter

station.

No. Reading and Writing to parameters which require a second parameter

260

For parameters that require the setting of a second parameter. If a value of„+0‟, „+1000‟ or

‘+2000‟ issettoaparameterNo.in the inverter manual, the second parameter will be

automatically re-written before a general parameter read/write.

Setting the third parameter of EXTR K12/K13 during programmed operation in the A500

261

Reading and writing the bias/gain in the A500/E500/S500

The following parameters CANNOT be used with EXTR K12/K13

262

Note:

Parameters 77 and 79 are accessible for computer link operation, but they are NOT

available if a FR-A5NR is used as they need the PU connector.

• Definition of special D registers and special M

coils

263

• D8154: Waiting time for response from the inverter

If the inverter does not give a response within the time set here, after the PLC has

transmitted a command, it is regarded as no response.

When„0‟ is set to D8154, if the inverter does not give a response in 2 seconds, it is

processed as an error.

The value is set to D8154, multiplied by 0.1(s) is treated as the judgement time for no

response.

• Use EXTR K10 (INV MON), K11 (INV CMD), K12 (RD PARAM) and K13 (WR PARAM)

in accordance with the contents of read/write communication to/from the inverter.

• For EXTR K12/K13, the PLC automatically re-writes the link parameters in accordance

with the parameter No.

For parameters relating to a second parameter of the inverter, program them using the

parameter No. adding by„+0‟,„+1,000‟ or„+2,000‟.

• EXTR K10 to EXTR K13 repeatedly execute communication while the drive condition is

ON.

• If two or more read instructions are driven at the same time, when the first is completed,

next is automatically executed. The step No. being executed is stored in D8155.

• Communication start

If communication is driven while the comms port is open, communication starts.

If the drive condition turns OFF during communication, communication continues until it is

completed. (The system will be adversely affected if communication is aborted by turning

OFF the drive condition.)

• Debugging function by M8154

A standby time of 15 ms is assured after communication with the inverter is completed

until next communication starts. While M8154 is ON, the standby time becomes 1,000 ms.

By monitoring D8156, the user can confirm the step which is executing communication.

5.16.1.1.10 Consistency with other instructions

• STL instruction

During communication, if the executed state is set to OFF, the communication port is not

open. As a result, communication is disabled.

• Branch instructions CJ and CJP

During communication, if the EXTR instruction is skipped by a CJ or CJP instruction, the

communication port is not open. As a result, communication is disabled.

• Description in subroutine

As the EXTR instruction requires the time of two or more operation cycles until execution

is complete, it is prohibited to write a subroutine where the EXTR instruction is called twice

or more in one operation cycle.

• Inside master control

No problems are expected.

• FOR-NEXT

It is prohibited to use an EXTR instruction together with a FOR-NEXT instruction.

264

• Description in interrupt

It is prohibited to describe an EXTR instruction in any interrupt.

• Cautions on write during run

(1) It is prohibited to rewrite the function No. of the EXTR instructions first parameter.

(If the function No. is rewritten during run, a problem will occur in the same way as change

in the application instruction No.)

(2) It is prohibited to delete an EXTR instruction.

(If the EXTR instruction is deleted during run, communication will be disabled.)

• Communication complete

When communication is finished, the completion flag M8029 turns ON, without regard to

the completion status (normal or abnormal). (M8029 turns ON for one calculation cycle at

the time of completion.

M8029 is used by manu instructions and therefore the ON/OFF status of M8029 is held

only until the next instruction which utilizes M8029 is executed.)

• Communication error

Communication is executed three times in total, including two retries. If communication is

abnormally finished even after the third execution, it is regarded as an error. Error types

are classified as follows.

1) When an error code is returned from the inverter

2) When the inverter does not give any response

3) When a response is given by an unspecified station

4) When a receive error (such as overrun, parity error and framing error) occurs

5) When M8063 turns ON and error code 6301 is set to D8067

6) When the check sum of the data returned by the inverter does not match

For 1), 2) & 3) M8156 is set to ON, and an error code is set to D8156.

If a communication error occurs, it is cleared when the next EXTR K10/K11/K12/K13 is

executed.

In general when an error occurs, M8157 turns ON and remains ON (latch) until it is set

OFF.

5.16.1.1.11 Communication command error codes

The table below shows values set to D8156 after EXTR K10 K13 are executed.

D8155 Contents of error Inverter operation

H0000 Communication is terminated normally (no error)

H0001 The inverter does not give any response

H0002 Timeout error interlocking with M8129. Error occurs when

transmission from the inverter is aborted

H0003 An unspecified station has given a response

H0004 The sum of the data returned by the inverter does not match

H0005 In parameter read/write, parameters Nos. 400 to 899 are

specified but cannot be supported. Sets error code 6702

into D8067

265

H006 The communication port is being used for another function

and therefore cannot be used for the EXTR instruction. Sets

error code 6702 into D8067.

H0100 The inverter has transmitted the error code H0 - Computer

NAK error. Communication request data includes an error

beyond the permissible number of retries

If an error occurs

beyond the permissible

number

of retries, the inverter will

come to an alarm st

H0101 The inverter has transmitted the error code H1 - Parity error.

The contents are different from the specified parity

H0102 The inverter has transmitted the error code H2 - Sum check

error. The sum check code value in the computer is different

to that of the inverter

H0103 The inverter has transmitted the error code H3 - Protocol

error. There is a grammar error in the data received by the

inverter, data receive is not completed within the specified

time, or the CR or LF is different from the parameter setting

H0104 The inverter has transmitted the error code H4 - Framing

error. The stop bit length is different from the default set

value

H0105 The inverter has transmitted the error code H5 - Overrun

error. Data sent before previous receive transmission was

complete.

H0106 The inverter has transmitted the error code H6. Currently

undefined

H0107 The inverter has transmitted the error code H7 - Character

error. An unused character (any character other than 0 to 9,

A to F and control codes) is received

The inverter does not

accept the data nor does it

come to an alarm stop.

H0108 The inverter has transmitted the error code H8. Currently

undefined

H0109 The inverter has transmitted the error code H9. Currently

undefined

H010A The inverter has transmitted the error code HA. This is a

mode error. A parameter write was tried while the inverter

was in operation or computer link mode was not selected

The inverter does not

accept the data nor does it

come to an alarm stop.

H010B The inverter has transmitted the error code HB -Instruction

code error.

A non-existing instruction code is specified

H010C The inverter has transmitted the error code HC -Data range

error. In a

parameter write, data outside the permissible setting range

is specified.

The inverter does not accept the data and an alarm does

not occur

266

H010D The inverter has transmitted the error code HD. Currently

undefined

H010E The inverter has transmitted the error code HE. Currently

undefined

H010F The inverter has transmitted the error code HF. Currently

undefined

5.16.1.1.12 Example program 1

This program reads parameters 0 to 99 in the inverter at station No. 6, to D1000 to D1099

in the PLC.

5.16.1.1.13 Example program 2

This program reads parameters 0 to 99 in the inverters at station Nos. 6, 7, 8 and 9, to

D1000 to D1099, D1100 to D1199, D1200 to D1299 and D1300 to D1399 respectively in

the PLC.

267

V Station No. control

V1 Parameter No. control

V2 Read parameter storage destination

5.16.1.1.14 Example program 3

This program writes the speed parameter from PLC to inverter, performs forward rotation

by input X1, and reverse rotation by input X2.

By re-writing D10 in the peripheral equipment or the display unit, the frequency of the

inverter can be changed.

This program also monitors the frequency and output current in the inverter.

268

5.16.1.1.15 Example program 4

In the previous example, monitoring and write to the inverter are always driven. If the

program changes the frequency or gives a forward/reverse rotation command,

communication with the inverter may be delayed depending on the step executing

communication.

In the example below, when a request to write is generated, a request to read is

interrupted, write is executed, then monitoring is continued again after write is completed.

269

5.16.1.1.16 Example program 5

Example using the STL instruction

270

a) Specifies station No. 2

b) Instruction code for operation command

c) Forward rotation command

d) Transmits/receives a command to/from the inverter.

e) Changes to the „error processing‟ state as an error has occurred.

f) Changes to the „next‟ state as receive is normally finished.

g) Receive is abnormally finished.

h) Receive is complete.

5.16.1.1.17 Related Error Code Lists

PLC hardware error code list (M8061, D8061)

Grammar error code list (M8065, D8065)

Operation error code list (M8067, D8067)

271

Applied Instructions:

272

 Symbols list:

D - Destination device.

S - Source device.

m, n- Number of active devices, bits or an operational constant.

Additional numeric suffixes will be attached if there are more than one operand with the

same function e.g. D1,S3or for lists/tabled devices D3+0,S+9etc.

MSB - Most Significant Bit, sometimes used to indicate the mathematical sign of a number,

i.e.

positive = 0, and negative = 1.

LSB - Least Significant Bit.

Instruction modifications:

☆☆☆- An instruction operating in 16 bit mode, where ☆☆☆�identifies the instruction

mnemonic.

☆☆☆P - A 16 bit mode instruction modified to use pulse (single) operation.

D☆☆☆- An instruction modified to operate in 32 bit operation.

D☆☆☆- A 32 bit mode instruction modified to use pulse (single) operation.

 A repetitive instruction which will change the destination value on every scan

unless modified by the pulse function.

An operand which cannot be indexed, i.e. The addition of V or Z is either invalid or

will have no effect to the value of the operand.

5.17.1 LD compare

(FNC 224 to 230)

273

Operation:

The value of S1and S2are tested according to the comparison of the instruction. If the

comparison is true then the LD contact is active. If the comparison is false then the LD

contact is not active.

Points to note:

The LD comparison functions can be placed anywhere in a program that a standard LD

instruction can be placed. I.e., it always starts a new block.

5.17.2 AND compare (FNC 232 to 238)

274

Operation:

The value of S1and S2are tested according to the comparison of the instruction. If the

comparison is true then the AND contact is active. If the comparison is false then the AND

contact is not active.

Points to note:

The AND comparison functions can be placed anywhere in a program that a standard

AND instruction can be placed. i.e., it is a serial connection contact.

5.17.3 OR compare (FNC 240 to 246)

275

Operation:

The value of S1and S2are tested according to the comparison of the instruction. If the

comparison is true then the OR contact is active. If the comparison is false then the OR

contact is not active.

Points to note:

The OR comparison functions can be placed anywhere in a program that a standard OR

instruction can be placed. i.e., it is a parallel connection contact.

6. Diagnostic Devices

The following special devices are used by the PLC to highlight the current operational

status and identify any faults or errors that may be occurring. There are some variations in

the application of these devices to members of the PLC family, these are noted where

appropriate.

The Internal diagnostic devices consist of both auxiliary (M) coils and data (D) registers.

Often there is a correlation between both M and D diagnostic devices for example M8039

identifies that the PLC is in constant scan mode but D8039 contains the value or length of

the set constant scan.

Devices unable to be set by user:

Any device of type M or D that is marked with a“(�)”cannot be set by a users program. In

276

the case of M devices this means the associated coil cannot be driven BUT all contacts

can be read. For data devices (D) new values cannot be written to the register by a user

BUT the register contents can be used in a data comparison.

Default Resetting Devices:

• Certain devices reset to their default status when the PLC is turned from OFF to ON.

These are identified by the following symbol“()”

Symbol summary:

• not able to be set by user

• automatically reset to default at power ON.

• Also reset to default when CPU is switched to RUN.

• Also reset to default when CPU is switched to STOP.

6.1 Device Lists

Device HCA2

M8000 ★ ★ ★

M8001 ★ ★ ★

M8002 ★ ★ ★

M8003 ★ ★ ★

M8004 ★ ★ ★

M8005 - - ★

M8006 - - ★

M8007 - - ★

M8008 - - ★

M8009 - - ★

M8010 Reserved

M8011 ★ ★ ★

M8012 ★ ★ ★

M8013 ★ ★ ★

M8014 ★ ★ ★

M8015 ★ ★ ★

M8016 ★ ★ ★

M8017 ★ ★ ★

M8018 ★ ★ ★

M8019 ★ ★ ★

M8020 ★ ★ ★

M8021 ★ ★ ★

277

M8022 ★ ★ ★

M8023 Reserved

M8024 - - ★

M8025 - - ★

M8026 - - ★

M8027 - - ★

M8028 ★*1 -

M8029 ★ ★ ★

M8030 - - ★

M8031 ★ ★ ★

M8032 ★ ★ ★

M8033 ★ ★ ★

M8034 ★ ★ ★

M8035 ★ ★ ★

M8036 ★ ★ ★

M8037 ★ ★ ★

M8038 ★ ★ ★

M8039 ★ ★ ★

M8040 ★ ★ ★

M8041 ★ ★ ★

M8042 ★ ★ ★

M8043 ★ ★ ★

M8044 ★ ★ ★

M8045 ★ ★ ★

M8046 ★ ★ ★

M8047 ★ ★ ★

M8048 - - ★

M8049 - - ★

Device HCA2

D8000 ★ ★ ★

D8001 ★ ★ ★

D8002 ★ ★ ★

D8003 ★ ★ ★

D8004 ★ ★ ★

D8005 - - ★

D8006 - - ★

D8007 - - ★

D8008 - - ★

D8009 - - ★

D8010 ★ ★ ★

278

D8011 ★ ★ ★

D8012 ★ ★ ★

D8013 ★ ★ ★

D8014 ★ ★ ★

D8015 ★ ★ ★

D8016 ★ ★ ★

D8017 ★ ★ ★

D8018 ★ ★ ★

D8019 ★ ★ ★

D8020 ★ ★ ★

D8021

Reserved

D8022

D8023

D8024

D8025

D8026

D8027

D8028 ★ ★ ★

D8029 ★ ★ ★

D8030 ★ ★ -

D8031 ★ ★ -

D8032

Reserved

D8033

D8034

D8035

D8036

D8037

D8038

D8039 ★ ★ ★

D8040 ★ ★ ★

D8041 ★ ★ ★

D8042 ★ ★ ★

D8043 ★ ★ ★

D8044 ★ ★ ★

D8045 ★ ★ ★

D8046 ★ ★ ★

D8047 ★ ★ ★

D8048 Reserved

D8049 - - ★

Note *1: M8028 offers a different functionality for than it does for .

279

Device HCA2

M8050 ★ ★ ★

M8051 ★ ★ ★

M8052 ★ ★ ★

M8053 ★ ★ ★

M8054 ★ ★ ★

M8055 ★ ★ ★

M8056 - - ★

M8057 - - ★

M8058 - - ★

M8059 - - ★

M8060 - - ★

M8061 ★ ★ ★

M8062 - - ★

M8063 ★ ★ ★

M8064 ★ ★ ★

M8065 ★ ★ ★

M8066 ★ ★ ★

M8067 ★ ★ ★

M8068 ★ ★ ★

M8069 - - ★

M8070 ★ ★ ★

M8071 ★ ★ ★

M8072 ★ ★ ★

M8073 ★ ★ ★

M8074 Reserved

M8075 - - ★

M8076 - - ★

M8077 - - ★

M8078 - - ★

M8079 - - ★

M8080

Reserved

M8081

M8082

M8083

M8084

M8085

M8086

M8087

M8088

M8089

280

M8090

Reserved

M8091

M8092

M8093

M8094

M8095

M8096

M8097

M8098

M8099 - - ★

Device HCA2

D8050

Reserved

D8051

D8052

D8053

D8054

D8055

D8056

D8057

D8058

D8059

D8060 - - ★

D8061 ★ ★ ★

D8062 - - ★

D8063 ★ ★ ★

D8064 ★ ★ ★

D8065 ★ ★ ★

D8066 ★ ★ ★

D8067 ★ ★ ★

D8068 ★ ★ ★

D8069 ★ ★ ★

D8070 ★ ★ ★

D8071

Reserved D8072

D8073

D8074 ★

D8075 - - ★

D8076 - - ★

D8077 - - ★

D8078 - - ★

281

D8079 - - ★

D8080 - - ★

D8081 - - ★

D8082 - - ★

D8083 - - ★

D8084 - - ★

D8085 - - ★

D8086 - - ★

D8087 - - ★

D8088 - - ★

D8089 - - ★

D8090 - - ★

D8091 - - ★

D8092 - - ★

D8093 - - ★

D8094 - - ★

D8095 - - ★

D8096 - - ★

D8097 - - ★

D8098 - - ★

D8099 - - ★

Device HCA2

M8100

Reserved

M8101

M8102

M8103

M8104

M8105

M8106

M8107

M8108

M8109 - - ★

M8110

Reserved

M8111

M8112

M8113

M8114

M8115

M8116

M8117

282

M8118

M8119

M8120 Reserved

M8121 ★ ★ ★

M8122 ★ ★ ★

M8123 ★ ★ ★

M8124 ★ ★ ★

M8125 Reserved

M8126 ★ ★ ★

M8127 ★ ★ ★

M8128 ★ ★ ★

M8129 ★ ★ ★

M8130 - - ★

M8131 - - ★

M8132 - - ★

M8133 - - ★

M8134

Reserved

M8135

M8136

M8137

M8138

M8139

M8140 ★ ★ -

M8141

Reserved
M8142

M8143

M8144

M8145 ★ ★ -

M8146 ★ ★ -

M8147 ★ ★ -

M8148 ★ ★ -

M8149 Reserved

Device HCA2

D8100
Reserved

D8101

D8102 ★ ★ ★

D8103

Reserved

D8104

D8105

D8106

D8107

283

D8108

D8109 - - ★

D8110

Reserved

D8111

D8112

D8113

D8114

D8115

D8116

D8117

D8118

D8119

D8120 ★ ★ ★

D8121 ★ ★ ★

D8122 ★ ★ ★

D8123 ★ ★ ★

D8124 ★ ★ ★

D8125 ★ ★ ★

D8126 Reserved

D8127 ★ ★ ★

D8128 ★ ★ ★

D8129 ★ ★ ★

D8130 - - ★

D8131 - - ★

D8132 - - ★

D8133 - - ★

D8134 - - ★

D8135 - - ★

D8136 ★ ★ ★

D8137 ★ ★ ★

D8138
Reserved

D8139

D8140 ★ ★ ★

D8141 ★ ★ ★

D8142 ★ ★ ★

D8143 ★ ★ ★

D8144 Reserved

D8145 ★ ★ -

D8146 ★ ★ -

D8147 ★ ★ -

D8148 ★ ★ -

284

D8149 Reserved

Device HCA2

M8150

Reserved

M8151

M8152

M8153

M8154

M8155

M8156

M8157

M8158

M8159

M8160 - - ★

M8161 ★ ★ ★

M8162 ★ ★ ★

M8163 Reserved

M8164 - - ★

M8165
Reserved

M8166

M8167 - - ★

M8168 - - ★

M8169 Reserved

M8170 ★ ★ ★

M8171 ★ ★ ★

M8172 ★ ★ ★

M8173 ★ ★ ★

M8174 ★ ★ ★

M8175 ★ ★ ★

M8176

Reserved

M8177

M8178

M8179

M8180

M8181

M8182

M8183 ★M504 ★ ★

M8184 ★M505 ★ ★

M8185 ★M506 ★ ★

M8186 ★M507 ★ ★

M8187 ★M508 ★ ★

285

M8188 ★M509 ★ ★

M8189 ★M510 ★ ★

M8190 ★M511 ★ ★

M8191 ★M503 ★ ★

M8192

Reserved

M8193

M8194

M8195

M8196

M8197

M8198

M8199

Device HCA2

D8150

Reserved

D8151

D8152

D8153

D8154

D8155

D8156

D8157

D8158 ★ ★ -

D8159 ★ ★ -

D8160

Reserved
D8161

D8162

D8163

D8164 - - ★

D8165

Reserved

D8166

D8167

D8168

D8169

D8170

D8171

D8172

D8173 ★ ★ ★

D8174 ★ ★ ★

D8175 ★ ★ ★

D8176 ★ ★ ★

286

D8177 ★ ★ ★

D8178 ★ ★ ★

D8179 ★ ★ ★

D8180 ★ ★ ★

D8181 Reserved

D8182 ★ ★ ★

D8183 ★ ★ ★

D8184 ★ ★ ★

D8185 ★ ★ ★

D8186 ★ ★ ★

D8187 ★ ★ ★

D8188 ★ ★ ★

D8189 ★ ★ ★

D8190 ★ ★ ★

D8191 ★ ★ ★

D8192 ★ ★ ★

D8193 ★ ★ ★

D8194 ★ ★ ★

D8195 ★ ★ ★

D8196

Reserved
D8197

D8198

D8199

Note;

When using an N:N network configuration with the , M503 to M511 are used in place of

the regular M devices as shown above. D208 to D218 are used in place of the regular D

devices shown below.

Device HCA2

M8200 - ★ ★

M8201 - ★ ★

M8202 - ★ ★

M8203 - ★ ★

M8204 - ★ ★

M8205 - ★ ★

M8206 - ★ ★

M8207 - ★ ★

M8208 - ★ ★

M8209 - ★ ★

M8210 - ★ ★

287

M8211 - ★ ★

M8212 - ★ ★

M8213 - ★ ★

M8214 - ★ ★

M8215 - ★ ★

M8216 - ★ ★

M8217 - ★ ★

M8218 - ★ ★

M8219 - ★ ★

M8220 - ★ ★

M8221 - ★ ★

M8222 - ★ ★

M8223 - ★ ★

M8224 - ★ ★

M8225 - ★ ★

M8226 - ★ ★

M8227 - ★ ★

M8228 - ★ ★

M8229 - ★ ★

M8230 - ★ ★

M8231 - ★ ★

M8232 - ★ ★

M8233 - ★ ★

M8234 - ★ ★

M8235 ★ ★ ★

M8236 ★ ★ ★

M8237 ★ ★ ★

M8238 ★ ★ ★

M8239 ★ ★ ★

M8240 ★ ★ ★

M8241 ★ ★ ★

M8242 ★ ★ ★

M8243 ★ ★ ★

M8244 ★ ★ ★

M8245 ★ ★ ★

M8246 ★ ★ ★

M8247 ★ ★ ★

M8248 ★ ★ ★

M8249 ★ ★ ★

M8250 ★ ★ ★

M8251 ★ ★ ★

288

M8252 ★ ★ ★

M8253 ★ ★ ★

M8254 ★ ★ ★

M8255 ★ ★ ★

Device HCA2

D8200 Reserved

D8201 ★D201 ★ ★

D8202 ★D202 ★ ★

D8203 ★D203 ★ ★

D8204 ★D204 ★ ★

D8205 ★D205 ★ ★

D8206 ★D206 ★ ★

D8207 ★D207 ★ ★

D8208 ★D208 ★ ★

D8209 ★D209 ★ ★

D8210 ★D210 ★ ★

D8211 ★D211 ★ ★

D8212 ★D212 ★ ★

D8213 ★D213 ★ ★

D8214 ★D214 ★ ★

D8215 ★D215 ★ ★

D8216 ★D216 ★ ★

D8217 ★D217 ★ ★

D8218 ★D218 ★ ★

D8219 Reserved

D8220

Reserved

D8221

D8222

D8223

D8224

D8225

D8226

D8227

D8228

D8229

D8230

Reserved

D8231

D8232

D8233

D8234

289

D8235

D8236

D8237

D8238

D8239

D8240

Reserved

D8241

D8242

D8243

D8244

D8245

D8246

D8247

D8248

D8249

D8250

Reserved

D8251

D8252

D8253

D8254

D8255

6.2 PLC Status (M8000 to M8009 and D8000 to D8009)

Diagnostic

Device

Operation

M8000 ()

RUN monitor

NO contact

M8001 ()

RUN monitor

NC contact

M8002 ()

Initial pulse

NO contact

M8003 ()

Initial pulse

NC contact

M8004 ()

Error

ON when one or more

error

290

occurrence flags from the range

M8060

to M8067 are ON

M8005 ()

Battery voltage

Low

(Not / HCA2)

On when the battery

voltage is below the

value

set in D8006

M8006 ()

Battery error

latch (Not /

HCA2)

Latches the battery

Low error

M8007 ()

Momentary

power failure

(Not / HCA2)

See note 2

M8008 ()

Power failure

(Not / HCA2)

Power loss has

occurred

See note 2

M8009 ()

24V DC Down

(Not / HCA2)

Power failure of 24V

DC

service supply

Diagnostic

Device

Operation

D8000 ()

Watchdog

timer

 / HCA2/

200ms

See note 1

D8001 ()

PLC type and

version

 :22

HCA2:26 E.g. 26100

= HCA2, V1.00

 :24

D8002 ()

Memory

capacity

(see also

D8102)

0002: 2K steps

(only)

0004: 4K steps ()

0008: 8K or 16k steps

(HCA2/)

D8003 ()

Memory type

00H = Option RAM,

01H = Option

EPROM,

02H = Option

EEPROM,

0AH = Option

291

EEPROM(protected)

10H = Built-in MPU

memory

D8004 ()

Error number

M☆☆☆☆

The contents of this

register☆☆☆☆

identifies which error

flag is active, i.e.

if ☆☆☆☆= 8060

identifies M8060

D8005 ()

Battery voltage

(Not / HCA2)

E.g. 36 = 3.6 volts

D8006 ()

Low battery

voltage

(Not / HCA2)

The level at which a

low

battery voltage is

detected

D8007 ()

Power failure

count(Not /

HCA2)

The number of times

a

momentary power

failure has

occurred since power

ON

D8008

Power failure

detection.

(Not / HCA2)

The time period

before shut down

when a power failure

occurs (default 10ms)

See note 2

D8009 ()

24V DC failed

device((Not /

HCA2)

Lowest device

affected by 24V DC

power failure

Note 1:

• The contents of this register can be changed

by the user. Settings in 1 msec steps are

possible. The value should

be set greater than the maximum scan time

(D8012) to ensure constant scan operation.

292

Note 2:

• When the power supply used is 200V AC, the power down detection period is

determined by the value of

D8008. This can be altered by the user within the allowable range of 10 to 100msec.

6.3 Clock Devices (M8010 to M8019 and D8010 to D8019)

The following devices apply to ,HCA2 and PLC‟s as standard when a real time clock

option board installed.

6.4 Operation Flags (M8020 to M8029 and D8020 to D8029)

Diagnostic Device Operation

293

M8020 ()

Zero

Set when the result of

an

ADD (FNC 20) or SUB

(FNC

21) is“0”

M8021 ()

Borrow

Set when the result of a

SUB

(FNC 21) is less than

the

min. negative number

M8022 ()

Carry

Set when „carry‟ occurs

during an ADD (FNC

20) or

when an overflow

occurs as

a result of a data shift

operation

M8024

(Not / HCA2)

BMOV (FNC 15)

reverse

mode. See note 3

M8025

(Not / HCA2)

When ON

HSC(FNC53-55)

instructions are

processed

even when the external

HSC

reset input is activated

M8026

(Not / HCA2)

RAMP (FNC 67) hold

mode

M8027

(Not / HCA2)

PR (FNC 77) 16

element

data string

M8028

Note:

Separate and

 operation

(Not HCA2)

 : Change timers

T32~T62to10mstype

 :Permit

FROM/TO to interrupt

program.(V3.00 and

above

M8029 ()

Instruction

execution

complete

Set on the completion

of

operations such as

DSW

294

(FNC 72), RAMP (FNC

67)

etc.

Diagnostic Device Operation

D8020()

See note 4

Input filter setting for

devices; X000 to X017

() default value = 10

msec, zero value =

50µsec

(X000, X001: 20µsec)

X000 to X007(/ HCA2)

default value = 10msec

zero value = 50µsec

(X000, X001: 10µsec)

D8021()

(Not HCA2,) See

note 4

Input filter setting for

devices;

X010 to X017 ()

default value = 10

msec,

zero value = 50µsec

D8022 -D8027 Reserved

D8028 () Current value of the Z0

index register

See note 5

D8029 () Current value of the V0

index register

See note 5

Note 3

• If M8024 is used with a BMOV (FNC 15) instruction, it will operate as follows; M8024

OFF - Normal operation (Forwarding direction is [S] to [D]) M8024 ON - Reverse operation

(Forwarding direction becomes [D] to [S]) This device is not supported in and HCA2

Note 4

• The settings for input filters only apply to the main processing units which use 24V DC

inputs. AC input filters are not adjustable.

295

6.5 PLC Operation Mode (M8030 to M8039 and D8030 to D8039)

296

6.6 Step Ladder (STL) Flags (M8040 to M8049 and D8040 to D8049)

General note:

• M8046 to M8049 STL states are updated when the END instruction is executed.

297

6.7 Interrupt Control Flags (M8050 to M8059 and D8050 to D8059)

298

6.8 Error Detection Devices (M8060 to M8069 and D8060 to D6069)

• Please see the following page for the notes referenced in this table.

Note 6:

•If the unit or block corresponding to a programmed I / O number is not actually loaded,

M8060 is set to ON and the

first device number of the erroneous block is written to D8060.

299

Note 7:

•An I/O bus check is executed when M8069 is turned ON. If

an I/O bus error occurs, error code 6103 is written to D8069

and M8061 is turned ON.

If an Extension unit 24V failure occurs, error code 6104 is

written to D8061 and M8061 is turned ON. M8009 will then

be turned ON and the I/O address of the lowest numbered

device affected by the 24V DC power failure is written to

D8009

General note:

•HPP refers to Handy programming panel.

6.9 Link and Special Operation Devices (M8070 to M8099 and D8070 to

D8099)

300

6.10 Miscellaneous Devices

(M8100 to M8119 and D8100 to D8119)

6.11 Communication Adapter

Devices, i.e. 232ADP, 485ADP (M8120 to M8129 and D8120 to D8129)

301

6.12 High Speed Zone Compare Table Comparison Flags

(M8130 to M8148 and D8130 to D8148)

Note 8

• See section 5.6.6 for full explanation and use.

302

303

6.13 Miscellaneous Devices (M8160 to M8199)

304

6.14 Miscellaneous devices (D8158 to D8164) and Index Registers (D8182

to D8199)

*1 See Chapter 10.19.2 for more information

305

6.15 N:N Network Related Flags and Data Registers

Note: Functionality available for

CPU Version 2.00 and above.

Diagnostic

Device

Operation

M8183 ()

(For use

M504

ON when

communication error

in master station

M8184 ()

(For use

M505

ON when

communication error

in 1 st slave station

M8185 ()

(For use

M506)

ON when

communication error

in 2 nd slave station

M8186 ()

(For use

M507

ON when

communication error

in 3 rd slave station

M8187 ()

(For use

M508

ON when

communication error

in 4 th slave station

M8188 ()

(For use

M509)

ON when

communication error

in 5 th slave station

M8189 ()

(For use

M510)

ON when

communication error

in 6 th slave station

M8190 ()

(For use

M511)

ON when

communication error

in 7 th slave station

M8191 ()

(For use

M503)

ON when

communicating to

another station

Note 9

• Devices M503-M511 and D201-D255 in the cannot be applied to other functions in

the user program. These devices are used exclusively for the N:N Network.

Diagnostic

Device

Operation

D8173 () Station number

D8174 () Total number of slave

stations

D8175 () Refresh range

D8176

See note10

Station number setting

Default value k0

D8177

See note10

Total number of slave

stations

setting

Default value k7

D8178

See note10

Refresh range setting

Default value k0

D8179

See note10

Retry count setting

Default value k3

D8180

See note10

Comms time-out setting

Default value k5

8201 () (For use

D201)

Current network scan time

D8202 () (For use

D202)

Maximum network scan time

D8203 () (For use

D203)

Number of communication

error at master station

D8204 to

D8210 () (For use

D204

to D210)

Number of communication

error at respective slave

station

D8211 () (For use

D2113

Code of communication error

at master station

D8212 to D8218 ()

(For use D212 to D218)

Code of communication error

at respective slave station

306

Note 10

• When these devices are not being used for an N:N Network their respective default

values are all„0‟. The relevant default values are assumed at each power ON.

6.16 Up/Down Counter Control (M8200 to M8234 and D8219 to D8234)

6.17 High Speed Counter Control (M8235 to M8255 and D8235 to D8255)

6.18 Error Code Tables

307

308

Error

Detection

Device

Stored Error

Number

Associated Meaning Action

D8066

Circuit error

0000 No error A circuit error occurs if a

combination of

instructions is incorrect

or badly specified.

Select programming

mode and correct the

identified error.

6601 LD and LDI is used continuously 9 or

more times in succession

6602 1)No LD/ LDI instruction. The use of

LD/LDI or ANB/ORB instruction is

incorrect.

2)The following instructions are not

connected to the active bus line: STL,

RET, MCR, (P)ointer, (I)nterrupt, EI, DI,

SRET, IRET, FOR, NEXT, FEND and

END

3)When MPP is missing

6603 MPS is used continuously more than 12

times

6604 The use of MPS, MRD, MPP instruction

is incorrect

6605 1)The STL instruction is continuously

used 9 times or more

2)MC, MCR instruction, (I)nterrupt

pointer

309

orSRETinstructionisusedwithinanSTL

program area

3)RET has not been used in the program

or is not connected to an STL instruction

6606 1)No (P)ointer, (I)nterrupt pointer

2)No SRET/ IRET

3)An (I)nterrupt pointer, SRET or IRET

has been used within the main program

4)STL, RET, MC or MCR have been

used within either a subroutine or an

interrupt routine

6607 1)The use of FOR and NEXT is incorrect

2)The following instructions have been

used within a FOR -NEXT loop: STL,

RET, MC, MCR, IRET, SRET, FEND or

END

6608 1)The use of MC/ MCR is incorrect

2)Missing MCR N0

3)SRET, IRET instruction or an

(I)nterrupt pointer has been used within

an MC/ MCR instruction area

6609 Other error

Error

Detection

Device

Stored Error

Number

Associated Meaning Action

D8066

Circuit error

6610 LD, LDI is used continuously 9 or more

times in succession

A circuit error occurs if a

combination of

instructions is incorrect

or badly specified.

Select programming

mode and correct the

identified error.

6611 Number of LD/LDI instructions is more

than ANB/ORB instructions

6612 Number of LD/LDI instructions is less

than ANB/ORB instructions

6613 MPS is used continuously more than 12

times

6614 MPS instruction missing

6515 MPP instruction missing

6616 Unauthorized use of the MPS/ MRD/

MPP instructions; possible coil missing

6616 Unauthorized use of the MPS/ MRD/

MPP instructions; possible coil missing

6617 One of the following instructions is not

connected to the active bus line: STL,

310

RET, MCR, (P)ointer, (I)nterrupt pointer,

EI, DI, SRET, IRET, FOR, NEXT, FEND

and END

6618 STL, RET, MC or MCR programmed

within either a subroutine or an interrupt

routine

6619 Invalid instruction programmed within a

FOR - NEXT loop: STL, RET, MC, MCR,

(I)nterrupt pointer, IRET and SRET

6620 FOR - NEXT instruction nesting levels

(5) exceeded

6621 The number of FOR and NEXT

instructions does not match

6622 NEXT instruction not found

6623 MC instruction not found

6624 MCR instruction not found

6625 The STL instruction is continually used 9

times or more

6626 Invalid instruction programmed within an

STL - RET program area: MC, MCR,

(I)nterrupt pointer, IRET and SRET

6627 RET instruction not found

6628 (I)nterrupt pointer, SRET and IRET

incorrectly programmed within main

program

6629 (P)ointer or (I)nterrupt pointer label not

found

6630 SRET or IRET not found

6631 SRET programmed in invalid location

6632 IRET programmed in invalid location

Error

Detection

Device

Stored Error

Number

Associated Meaning Action

D8067

Operation

error

0000 No error These error occur

during the execution of

an

operation. When an

operation error occurs,

STOP the PLC enter

programming ode and

correct the fault.

6701 1)No jump destination (pointer) for CJ or

CALL instructions

2)(P)ointer is designated in a block that

comes after the END instruction

3)An independent label is designated in

a FOR-NEXT loop or a subroutine

6702 6 or more CALL instruction nesting

311

levels have been used Note: operation errors

can occur even when

the syntax or circuit

design is correct, e.g.

D500Z is a valid

statement within an

HCA2PLC. But if Z had

a value of 10000, the

data register D10500

would be attempted to

be accessed. This will

cause an operation

error as there is no

D10500 device

available.

6703 3 or more interrupt nesting levels have

been used

6704 6 or more FOR - NEXT instruction

nesting levels have been used

6705 An incompatible device has been

specified as an operand for an applied

instruction

6706 A device has been specified outside of

the allowable range for an applied

instruction operand

6707 A file register has been accessed which

is outside of the users specified range

6708 FROM/ TO instruction error

6709 Othererror,i.e.missingIRE/SRET,

unauthorized FOR - NEXT relationship

D8067

PID

Operation

error

6730 Sampling time TS(TS<0 or >32767) The identified

parameter

is specified outside of

its allowable range

Execution ceases PID

instruction must be

reset before execution

will resume

6732 Input filter valueα(α<0 or >=101)

6733 Proportional gain KP(KP<0 or >32767)

6734 Integral time constant TI (TI<0

or >32767)

6735 Derivative gain KD(KD<0 or >=101)

6736 Derivative time constant TD (TD<0

or >32767)

6740 Sampling time TS is less than the

program scan time

TS is set to program

scan time -Execution

will continue

6742 Current value∆exceeds its limits Data affected resets to

the nearest limit value.

For all errors except

6745, this will either be

a minimum of -32768 or

a maximum of +32767.

Execution will continue,

but user should reset

PID instruction.

6743 Calculated errorεexceeds its limits

6744 Integral result exceeds its limits

6745 Derivative gain over, or differential value

exceeds allowable range

6746 Derivative result exceeds its limits

6747 Total PID result exceeds its limits

6750 SV - PVnf< 150, or system is unstable

(SV – PV nf has wide, fast variations)

The error fluctuation is

outside the normal

operation limits for the

PID instruction.

Execution ceases. PID

instruction must be

6751 Large Overshoot of the Set Value

6752 Large fluctuations during Autotuning Set

Process

312

reset.

7. Execution Times And Instructional Hierarchy

7.1 Basic Instructions

Mnemonic Object

Devices

Steps Execution Time inµsec

 HCA2

ON OFF ON OFF ON OFF

LD X,Y,M,S,T,C

and special

M

1 0.7 0.08

LDI

AND 0.65

ANI

OR

ORI

LDP X,Y,M,S,T,C 1 11.7 - 11.7 - 43.2

LDF - -

ANDP - - 37.4

ANDF - -

ORP - -

ORF - -

ANB Not

applicable

1 0.55 0.08

ORB

MPS 0.5

MRD 0.55

MPP 0.5

INV

MC Nest level,

M,Y

3 8.6 8.0 8.6 8.0 24.8 27.5

MCR Nest leve 2 4.1 - 4.1 - 20.8

NOP Not

applicable

1 0.45 0.08

END 450 - 450 - 508

STL S

(see note 1)

1 15.8+

8.2n

- 15.8+

8.2n

- 27.3 + 12.6n

RET Not

applicable

4.8 - 4.8 - 21.6

Mnemonic Object Steps Execution Time inµsec

313

Devices HCA2

ON OFF ON OFF ON OFF

OUT Y, M 1 0 .7 0 .0 8

S 2 4.4 24.4 24.3

Special M 2 2.8 0.16

T-K 3 11.2 10.2 11.2 10.2 42.3 37.4

T-D 3 12.2 11.2 12.2 11.2 42.2 37.2

C-K (16 bit) 3 8.1 6.9 8.1 6.9 25.5 24.9

C-D (16 bit) 3 9.5 8.0 9.5 8.0 25.3 25.0

C-K (32 bit) 5 8.1 6.8 8.1 6.8 25.3 24.9

C-D (32 bit) 5 9.5 8.0 9.5 8.0 25.2 24.9

SET Y, M 1 0.85 0.08

S 2 4.2 2.4 4.2 2.4

S when used

in

an STL step

(see note 1)

18.6+

6.8n

2.4 18.6+

6.8n

2.4 27.3+

12.6n

17.2

Special M 2.8 0.16

RST Y, M 1 0.85 0.08

S 2 3.8 2.4 3.8 2.4 23.1 17.3

Special M 2 2.8 0.16

T, C 2 8.7 7.3 8.7 7.3 27 25

D, V, Z and

special D

3 3.8 1.1 3.8 1.1 21.9 17.1

PLS Y, M 2 10.8 0.32

PLF Y, M 2 0.32

P 0TO6 1 0.45 0.08

I I□□□ 1

Note 1:

•“n”in the formulae to calculate the ON/OFF execution time, refers to the number of STL

instructions at the current parallel/merge branch. Thus the value of “n”will fall in the range

1 to 8.

314

315

316

317

318

319

320

*1:

• These instructions require NO preliminary contact devices such as LD, AND, OR etc.

*2:

• Where“n”is referred to this identifies the quantity of registers to be manipulated. “n”can

be equal or less than 512.

321

*3:

• Where“n”is referred to this identifies the quantity of bit devices to be manipulated.

“n”can be equal or less than selected operating mode, i.e. if 32 bit mode is selected

then“n”can have a value equal or less than 32.

*4:

• Where "n" is referred to this identifies the quantity of bit devices to be manipulated.

When an HCA2 PLC is used "n" can be equal or less than 1536. However, when an

controller is used "n" can be equal or less than 512.

*5:

• Where "n" is referred to this identifies the quantity devices to be manipulated. "n" can

have any value taken from the range 2 through 512.

*6:

• Where "n" is referred to this identifies the range of devices to be reset. The device type

being reset is identified by the device letter in brackets in the '16/32 bit' column.

*7:

• Where "n" is referred to this identifies the number of devices the mean is to be

calculated from. The value of "n" can be taken from the range 1 through 64.

*8:

• Where "n" is referred to this identifies the range of devices to be refreshed. The value of

"n" is always specified in units of 8, i.e 8, 16, 24.....128. The maximum allowable range is

dependent on the number of available inputs/outputs.

*9:

• Where "n" is referred to this identifies the time setting for the input filters operation. "n"

can be selected from the range 0 through to 60 msec.

*10:

• There are limits to the total combined use of these instructions. For and HCA2there

should be no more than 4 simultaneously active instructions. However, can have 6

simultaneously active instructions.

*11:

• Where "n" is referred to this identifies the number of output points. "n" may have a value

equal or less than 64.

*12:

• Where "n" is referred to this identifies the number of words read or written FROM/TO

the special function blocks.

*13:

• Where "n" is referred to this identifies the number of octal (8 bit) words read or written

when two HC PLC‟s are involved in a parallel running function.

*14:

• Where "n" is referred to this identifies the number of elements in a stack, for 16 bit

operation n has a maximum of 256. However, for 32 bit operation n has a maximum of

128.

*15:

322

• Where "m1" is referred to this identifies the number of elements in the data table. Values

of m1 are taken from the range 1 to 32. For a the SORT instruction to completely process

the data table the SORT instruction will be processed m1 times.

7.2 Hierarchical Relationships Of Basic Program Instructions

The following table identifies an 'inclusive relationship'.

This means the secondary program construction is

included within the complete operating boundaries of the

primary program construction, e.g.:

Instruction combination is acceptable - for restrictions see appropriate note.

 Instruction combination is not allowed - bracketed number is the error code.

 Instruction combination is not recommended for use even though there is no

operational error.

The combination of instructions with an 'inclusive relationship' is allowable. However

please be aware of the following exceptions:

1) MC-MCR and STL-RET constructions cannot be used within FOR-NEXT loops,

P-SRET or I-IRET subroutines.

2) Program flow may not be discontinued by using any of the following methods while

inside MC-MCR, FOR-NEXT, P-SRET, I-IRET program constructions, i.e. using interrupts

(I), IRET, SRET, FEND or the END instruction is not

allowed.

323

The following table identifies an 'overlapping relationship'. This means the secondary

program

construction starts within the complete operating boundaries of the primary program

construction but finishes outside of the primary construction, e.g.:

①Enters a state as if the DI instruction was missing. An error is not generated.

②The first occurrence of either an FEND or the END instruction takes priority. This

would then end the program scan prematurely.

③The sequence will not process as expected, e.g.:

7.3 Batch Processing

This is the system used by all members of the HC family of PLC‟s. The basic concept is

that there are three stages to any program scan. In other words, every time the program is

processed form start to end the following sequence of events occurs:

324

Input processing:

All of the current input statuses are read in to a

temporary memory area; sometimes called an image

memory. The PLC is now ready for the next

program processing.......

Program processing:

All of the updated inputs are checked as the program

is processed. If the new input statuses change the

status of driven outputs, then these are

noted in the image memory for the......

Output processing:

The new, current statuses of the outputs which have

just be processed are physically updated, i.e relays are turned ON or OFF as required.

The

program scan starts again............ The system is known as 'Batch processing' because all

of the inputs, program operation and finally the outputs are processed as batches.

7.4 Summary of Device Memory Allocations

The memory allocations of the programmable are very complex, but from a users point of

view there are three main areas:

a) The Program Memory:

This memory area holds all of the data regarding: parameters, sequence program,

constant values K and H, pointer information for P and I devices, nest level information,

file register contents/allocations and also the program comment area.

- This memory area is latched either by battery backup or by use of EEPROM program

management (dependent on the PLC being used). Any data stored in this area is kept

even when the PLC is powered down. The duration and reliability of the data storage is

dependent upon the condition of the battery or EEPROM being used to perform the

backup process.

b) Data Memory

This memory area contains, as the title suggests, all of the data values associated with:

data registers (normal and special), Index registers, current timer values, retentive timer

values (if available) and current counter values.

- All of the devices which are designated as being latched (including retentive timers) are

backed up in a similar method to the one mentioned under point a).

- Index registers and special data registers (D8000 to D8255) operate in the specified

manner under the following circumstances.

325

- All other devices such as current values of non latched data registers, timers and

counters behave in the following manner.

c) Bit Memory

This memory area contains the contact status of all inputs, outputs, auxiliary relays, state

coils, timers and counters.

- All of the devices which are designated as being latched (including retentive timers) are

backed up in a similar method to the one mentioned under point a).

- Special auxiliary relays (M8000 to M8255) act in a similar way to the special data

registers mentioned under point b).

- All other devices are subject to the same changes as the current values of data registers,

timers and counter (see the last point and table under section b).

Summary

7.5 Limits Of Instruction Usage

7.5.1 Instructions Which Can Only Be Used Once In The Main Program Area

The following instructions can only be used once in the main program area. For PLC

applicability please check either the detailed explanations of the instructions or the

instruction execution tables list earlier.

• Instructions which can only be used once are:

FNC 52 MTR FNC 60 IST FNC 70 TKY

FNC 57 PLSY FNC 61 SORT FNC 71 HKY

326

FNC 58 PWM FNC 62 ABSD FNC 72 DSW

FNC 59 PLSR FNC 63 INCD FNC 74 SEGL

FNC 68 ROTC FNC 75 ARWS

• Only one of either FNC 57 PLSY or FNC 59 PLSR can be programmed at once.

Both instructions can not be present in the same active program.

7.5.2 Instructions Which Are Not Suitable

For Use With 110V AC Input Units

When using 110V AC input units certain operations, functions and instructions are not

recommended for use due to long energize/de-energize (ON/OFF) times of the 110V input

devices.

• Program operations not recommended for use are:

- Interrupt routines

- High speed counters

• Instructions not recommended for use are:

FNC 51 REFF FNC 68 ROTC FNC 72 DSW

FNC 52 MTR FNC 70 TKY FNC 75 ARWS

FNC 56 SPD FNC 71 HKY

8. PLC Device Tables

8.1 Performance Specification Of The

Item Specification Remarks

Operation control method Cyclic operation by stored program

I/O control method Batch processing method (when

END instruction is executed

I/O refresh instruction is available

Operation processing time Basic instructions: 0.55 to 0.7µs

Applied instructions: 1.65 to several 100µs

Programming language Relay symbolic language + step

ladder

Step ladder can be used to

produce an

SFC style program

Program capacity 2K steps Provided by built in EEPROM

memory

Number of instructions Basic sequence instructions: 29

Step ladder instructions: 2

A Maximum 116 applied

instructions

327

Applied instructions: 85 are available including all

variations

I/O configuration Max total I/O set by Main Processing Unit

Auxiliary

relay(M

coils)

General 384 points M0 to M383

Latched 128 points (subset) M384 to M511

Special 256 points From the range M8000 to M8255

State

relays

(S coils)

General 128 points S0 to S127

Initial 10 points (subset) S0 to S9

Timers (T) 100 msec Range: 0 to 3,276.7 sec 63 points T0 to T55

10 msec Range: 0 to 327.67 sec 31 points T32 to T62 when special M coil

M8028 is driven ON

1msec Range: 0.001 to 32.767 sec 1point T63

Counters

(C)

General Range: 1 to 32,767 counts 16 points C0 to C15

Type: 16 bit up counter

Latched 16 points(subset) C16 to C31

Type: 16 bit up counter

High

speed

counters

(C)

1phase Range: -2,147,483,648 to

+2,147,483,647 counts

C235 to C240 (note C235 is

latched) 6points

1phase c/w

start stop

input

C241(latched), C242 and C244

(latched) 3 points

2phase C246, C247 and C249 (all

latched) 3 points

A/B phase C251, C252 and C254 (all

latched) 3

points

Data

registers

(D)

General 128 points D0 to D127

Type:16 bit data storage register

pair for 32 bit device

Latched 128 points (subset) D128 to D255

Type:16 bit data storage register

pair for 32 bit device

Externally

adjusted

Range: 0 to 255 2 points D8013 or D8030 & D8031

Data is entered indirectly through

the external setting potentiometer

Special 256 points (inclusive of D8013) From the range D8000 to D8255

Type: 16 bit data storage register

Index 16 points VandZ

Type: 16 bit data storage register

Pointers

(P)

For use with

CALL

64 points P0 to P63

328

For use with

interrupts

6 points I00□to I30□

(rising trigger□=1,

falling trigger□=0)

Nest levels 8 points for use with MC and MCR N0 to N7

Constants Decimal K 16 bit: -32,768 to +32,767

32 bit: -2,147,483,648 to +2,147,483,647

Hexadecimal

H

16 bit: 0000 to FFFF

32 bit: 00000000 to FFFFFFFF

8.2 Performance Specification Of The HCA2

Item Specification Remarks

Operation control method Cyclic operation by stored program

I/O control method Batch processing method

(when END

instruction is executed)

I/O refresh instruction is available

Operation processing

time

Basic instructions: 0.55 to 0.7µs

Applied instructions: 1.65 to several 100µs

Programming language Relay symbolic language + step

ladder

Step ladder can be used to produce an

SFC style program

Program capacity 8K steps Provided by built in EEPROM memory

Number of instructions Basic sequence instructions: 29

Step ladder instructions: 2

Applied instructions: 89

A Maximum 120 applied instructions

are available including all variations

I/O configuration Max hardware I/O configuration points 128, dependent on user selection

(Max. software addressable Inputs 128, Outputs 128)

Auxiliary

relay

(M coils)

Genera 384 points M0 to M383

Latched 1152 points (subset) M384 to M1535

Special 256 points From the range M8000 to M8255

State

relays

(S coils)

Latched 1000 points S0 to S999

Initial 10 points (subset) S0 to S9

Timers (T) 100 msec Range: 0 to 3,276.7 sec 200

points

T0 to T199

10 msec Range: 0 to 327.67 sec 46

points

T200 to T245

1msec Range: 0 to 32.767 sec 4point T246 to T249

100 msec

retentive

Range: 0 to 3,276.7 sec 6

points

T250 to T255

Counters

(C)

General Range: 1 to 32,767 counts 16

points

C0 to C15 Type: 16 bit up counter

329

Latched 184 points (subset) C16toC199 Type: 16 bit up counter

General Range: 1 to 32,767 counts 20

points

C200 to C219 Type: 32 bit

bi-directional counter

Latched 15 points (subset) C220 to C234 Type: 32 bit bi-directional

counter

High

speed

counters

(C)

1phase Range: -2,147,483,648 to

+2,147,483,647 counts

Select upto four 1 phase

counters with a combined

counting frequency of 5kHz or

less. Alternatively select one 2

phase or A/B phase counter

with a counting frequency of

2kHz or less. Note all counters

are latched

C235 to C240 6points

1phase c/w

start stop

input

C241, C242 and C244 3points

2phase C246, C247 and C249 3points

A/B phase C251, C252 and C254 3points

Data

registers

(D)

General 7128 points D0 to D127 & D1000 to D7999

Type: 16 bit data storage register pair for

32 bit device

Latched 872 points (subset) D128 to D999

Type: 16 bit data storage register pair for

32 bit device

File 7000 points D1000 to D6999 set by parameter in 3

blocks of 500 program steps

Type: 16 bit data storage register

Externally

adjusted

Range: 0 to 255

2 points

Data is move from external setting

potentiometers to registers D8030 and

D8031)

Special 256 points (inclusive of D8013,

D8030

and D8031)

From the range D8000 to D8255

Type: 16 bit data storage register

Index 16 points VandZ

Type: 16 bit data storage register

Pointers

(P)

For use

with CALL

128 points P0 to P127

For use with

interrupts

6 points I00□to I30□

(rising trigger□=1,

falling trigger□=0)

Nest levels 8 points for use with MC and

MCR

N0 to N7

Constants Decimal K 16 bit: -32,768 to +32,767

32 bit: -2,147,483,648 to +2,147,483,647

Hexadecimal 16 bit: 0000 to FFFF

330

H 32 bit: 00000000 to FFFFFFFF

8.3 Performance Specification Of The PLC’s

Item Specification Remarks

Operation control method Cyclic operation by stored program

I/O control method Batch processing method

(when END

instruction is executed)

I/O refresh instruction is available

Operation processing

time

Basic instructions: 0.08µs

Applied instructions: 1.52 to several 100µs

Programming language Relay symbolic language + step

ladder

Step ladder can be used to produce an

SFC style program

Program capacity 8000 steps built in Expandable to 16000 steps using

additional memory cassette

Number of instructions Basic sequence instructions: 20

Step ladder instructions: 2

Applied instructions: 125

A Maximum 125 applied instructions are

available

I/O configuration Max hardware I/O configuration points 255, dependent on user selection

(Max. software addressable Inputs 255, Outputs 255

Auxiliary

relay

(M coils)

General 3072 points M0 to M3071

Latched 2572 points (subset) M500 to M3071

Special 256 points From the range M8000 to M8255

State

relays

(S coils)

General 1000 points S0 to S999

Latched 500 points (subset) S500 to S999

Initial 10 points (subset) S0 to S9

Annunciator 100 points S900 to S999

Timers (T) 100 msec Range: 0 to 3,276.7 sec 200

points

T0 to T199

10 msec Range: 0 to 327.67 sec 46

points

T200 to T245

1 msec

retentive

Range: 0 to 32.767 sec 4

points

T246 to T249

100 msec

retentive

Range: 0 to 3,276.7 sec 6

points

T250 to T255

Counters

©

General 16

bit

Range: 1 to 32,767 counts

200 points

C0 to C199

Type: 16 bit up counter

Latched

16 bit

100 points (subset C100 to C199

Type: 16 bit up counter

General Range: -2,147,483,648 to C200 to C234

331

32 bit 2,147,483,647 35 points Type: 32 bit up/down counter

Latched

32 bit

15 points (subset) C219 to C234

Type: 16 bit up/down counter

High

speed

counters

(C)

1 phase Range: -2,147,483,648 to

+2,147,483,647 counts

General rule: Select counter

combinations with a combined

counting frequency of 20kHz or

less.

Note all counters are latched

C235 to C240 6 points

1 phase

c/w start

stop input

C241 to C245 5 points

2 phase C246 to C250 5 points

A/B phase C251 to C255 5 points

Data

registers

(D)

General 8000 points Type: 16 bit data storage register pair for

32 bit device

Latched 7800 points (subset) D200 to D7999

Type: 16 bit data storage register pair for

32 bit device

File

registers

7000 points D1000 to D7999 set by parameter in 14

blocks of 500 program steps

Type: 16 bit data storage register

Special 256 points From the range D8000 to D8255

Type: 16 bit data storage register

Index 16 points V0 to V7 and Z0 to Z7

Type: 16 bit data storage register

Pointers

(P)

For use

with CALL

128 points P0 to P127

For use with

interrupts

6 input points, 3 timers, 6

counters

I00□�to I50□�and I6☆☆to I8☆☆

(rising trigger�□=1, falling trigger□

�=0,

☆☆=time in msec)

Nest levels 8 points for use with MC and

MCR

N0 to N7

Numbers Decimal K 16 bit: -32,768 to +32,767

32 bit: -2,147,483,648 to +2,147,483,647

Hexadecimal

H

16 bit: 0000 to FFFF

32 bit: 00000000 to FFFFFFFF

Floating

Point

32 bit: 0, ±1.175 x 10
-38

, ±3.403 x 10
38

(Not directly enterable)

332

9. Assigning System Devices

9.1 Addressing Extension Modules

Most of the HC family of PLC‟s have the ability to connect additional discreet I/O and/or

special function modules. To benefit from these additional units the user must address

each block independently.

Addressing Additional Discrete I/O

This type of I/O is the standard input and output modules. As each extension block or

powered extension unit is added to the system they assume the next available addresses.

Hence, the units closest to the base unit will have the lowest I/O numbers or addresses.

I/O numbers are always counted in octal. This means from 0 to 7 and 10 to 17 etc. Within

a users program the additional addresses are used as normal. Discreet I/O can be added

at the users discretion as long as

the rules of system configuration for each PLC type are obeyed. This information can be

found in the appropriate hardware manual. For easy use and identification, each

additional I/O unit should be labeled with the appropriate I/O numbers using the provided

number labels.

Caution when using an system with 8ER, 24MR units

• When an 8ER or an 24MR are used an additional 8 points (as 4 inputs, 4 outputs) of I/O

must be allowed for. This is because both units split blocks of 8 inputs and 8 outputs to

obtain a physical 4 input/ 4 output configuration. Hence, an 8ER unit actually occupies 8

input points and 8 output points even though there are only 4 physical inputs and 4

physical outputs.

Addressing Special Function Blocks

Special function blocks are allocated a logical„station/block number‟ from 0 to 7. This is

used by the FROM/TO instructions to directly access each independent special function

module.

The lower the„station/block number‟ is, the closer to the base unit it can be found. Special

function blocks can be added at the users discretion but the rules of configuration for each

type of PLC must be obeyed at all times. The configuration notes can be found in the

appropriate hardware manual for each programmable controller.

9.2 Real Time Clock Function

The time data of a RTC cassette or chip (built in to and HCA2) is battery backed. This

means when the PLC is turned OFF the time data and settings are not lost or corrupted.

333

The duration or storage life of the timedatails dependent upon the condition of the battery.

The real time clock has a worst case accuracy of ± 45 seconds per month at an ambient

temperature of 25°C. The calendar function of the RTC caters for leap years during the

period 1980 through 2079.

9.2.1 Setting the real time clock

The RTC can be set using the special data registers and control flags as follows:

These devices are used as shown in the program on the right.

Note:The has special instructions that simplify the setting and use of the RTC.

See section 5.14 for more details.

334

9.3 Analog Expansion Boards

The HCA2 expansion boards can be installed on the /1N Series PLCs to provide extra

analog I/O channels. Please see the respective expansion board User‟s Manual for more

information on configuration and hardware specifications.

The expansion boards are not equipped with a Gain/Offset setting so that these values

must be calculated in the PLC ladder program. Example programs are provided below.

9.3.1 HCA2-1DA-BD

This expansion board is used to convert a digital value in the range of 0 ~ 4000 that is

stored in D8114 to an analog output value. The analog output can be in the Voltage range

of 0-10 Volts DC or 4-20mA.

Voltage Output Mode

The following program example sets the Voltage Output mode. A digital value in D0 is

converted to the analog equivalent for output.

Current Output Mode

The following program example sets the Current Output mode. A digital value in D0 is

335

converted to the analog equivalent for output.

Example Application Programs

The user can use any digital value range that is convenient in the program but must

convert the value to the 0 ~ 4000 range before the correct analog value can be output. In

the same way, the analog outputs can be modified via PLC programming to give outputs

within a certain range. Please note that outputs outside the given range are not possible.

The Please see programming examples below.

Example Application Program #1

Output an analog value in the range of 0 to 10 Volts when the digital value in the user

program is 0 ~ 10000.

Ch1 is set for the voltage input (0 to 10V).

Ch2 is set for the current input (4 to 20mA).

The digital value gained through AD

conversion of Ch1 is stored at D0.

The digital value gained through AD

conversion of Ch2 is stored at D2

D0 ranges from 0 ~10000. To convert D0 to the 0 ~ 4000 value needed for D8114:

D8114 = [D0 x 4000] / 10000 or [D x 2] /5

336

Example Application Program #2

An output of 0 ~ A [0 < A < 10] is desired in the program that is using a digital range of

0~4000 that is stored in register D10.

Because A is smaller than 10 Volts, the digital value of 0~4000 must be converted to a

value of 0~A‟ as shown in the graphs above. 4000/10V = A‟/A or A‟ = [4000/10] x A = 400 x

A

D8114 = [A‟] x (D10 / 4000) = [400 x A] x [D10 / 4000) = (A x D10) / 10.

If A = 8

Example Application Program #3

The desired analog output is from values A to B where 0 < A < B < 10 and the digital

values range from 0 ~ 4000 in D20.

337

This example is equivalent to setting an offset and gain for the analog output.

The digital values must be converted to A‟ and B‟ per the graphs above.

[B-A]/[10-0]=[B‟ -A‟] / [4000 - 0], therefore [B‟ -A‟] = [B - A] x 400.

D8114 = [B‟ -A‟] x (D20 / 4000) + A‟

B‟ = 400 x B and A‟ = 400 x A (see previous example programs for calculation)

D8114 = [400 x (B - A)/4000] x D20 + (400 x A)

D8114 = [(B-A)/10] x D20 + (400 x A)

If A = 2 and B = 5, see the programming example below

Example Application Program #4

In Voltage Output Mode, a digital range of values A ~ B is used in the program for an

analog output of 0 ~ 10 Volts. The digital range of A ~ B stored in D30 must be converted

to 0 ~ 4000 before the correct analog value can be output.

[(4000 - 0) / (B-A)] = D8114 / (D30 - A)

D8114 = [4000 x D30 / (B - A)] - [(4000 x A) / (B - A)]

If A = 500 and B = 5500, then

D8114 = (4/5) X D30 – 400

338

Example Application Program #5

If using a digital range of C ~ D in the program to output an analog value of A ~ B, the

digital value must be converted to the 0 ~ 4000 equivalent and the analog value must be

converted to 0 ~ 10 Volt equivalent.

Digital Values for conversion to analog are stored in D8114

Please see prior programming examples for sample equations for the conversion of data

ranges.

D8114 = [(B‟-A‟)xD40]/(D-C)+[(A‟ xD)-(B‟ xC)/(D-C)

D8114 = [(400 x B - 400 x A) x D20] / (D-C) + [(400 x A x D) - (400 x B x C)] / (D - C) (from

prior

examples A‟ = 400 x A and B‟ = 400 x B

D8114=[400x(B-A)]/(D-C)+400x[(AxD)-(BxC)]/(D-C)

If A = 1, B = 5.5, C = 1000, and D = 5500, then

D8114=(2xD40)/5

Example Application Program #6

339

In the Current Output Mode, the 1DA converts values from 0 ~ 2000 to the analog output

of 4 ~ 20 mA. If using a digital range of 0 ~ 20000 in the program, the range must be

converted to 0 ~ 2000 as shown in the programming example below. Digital values for

conversion to analog are stored in D8114.

D8114 = [(2000 - 0) x D50] / (20000 - 0)

D8114 = D50 / 10

Example Application Program #7

In Current Output Mode, a user wants to use a range of 0 ~ A in the program to output the

analog current of 4 ~ 20mA. The user range 0 ~ A stored in D60 must be converted to the

range of 0 ~ 2000 as shown below.

D8114 = [(2000 -0) x D60] / (A - 0)

D8114 = (2000 x D60) / A, if A = 10000

D8114 = D60 / 5

340

Example Application Program #8

In Current Output mode, the user digital range of A ~ B is used to output a current of 4 - 20

mA. The range of A ~ B stored in D70 must be converted to a range of 0 ~ 2000 per the

example program below.

D8114/(D70 - A) = (2000 - 0)/ (B - A)

D8114 = {[(2000 - 0) x D70] / (B - A)} - {[(2000 -0) x A] / (B - A)}

If A = 4000 and B = 20000, then [(2000 x D70 /(20000 - 4000)] - [2000 x 4000 / (20000 -

4000)]

D8114=(D70/8)-500

Example Application Program #9

In Current Output mode, a current in the range of A ~ B (4mA < A < B < 20 mA) is output

by using a digital range of C ~ D that is stored in D80. The current range A ~ B must be

converted to the 4 ~ 20mA equivalent value and the digital range C ~ D must be converted

to the 0 ~ 2000 range equivalent value.

341

Please see previous programming examples for sample range conversion calculations.

D8114 = (B‟ -A‟)xD80/(D-C)+{(A‟ xD)-(B‟ xC)}/(D-C)

A‟ = 125 x A - 500, B‟ = 125 x B - 500,

D8114 = [(125 x B - 500) - (125 x A - 500)] x D80 / (D - C) +[(125 x A - 500) x D - (125 x B

-500) x C] / (D - C)

If A = 5, B = 15, C = 5000, and D = 15000

= [125 x (15 - 5)] x D80 / (15000 - 5000) + 125 x [(5-4) x 15000 - (15-4) x 5000]/ (15000 -

5000)

D8114=(D80/8)-500

9.3.2 TX1N-2AD-BD

This expansion board is used to convert up to two channels of analog input into digital

values for use by the /1N Series PLCs. Voltage input (0 ~ 10 Volts) or Current input (4 to

20 mA) for analog to digital conversion can be set by switching the auxiliary relays

assigned to each channel. The output values can be adjusted after the conversion via

PLC program code but resolution cannot be improved.

Basic Program #1

The following program sets Channel 1 in the Voltage Input mode and Channel 2 in the

Current Input mode with the A/D converted digital value of each channel stored in D0 and

D2 respectively.

Ch1 is set for the voltage input (0 to 10V).

Ch2 is set for the current input (4 to

20mA).

342

The digital value gained through AD conversion of Ch1 is stored at D0.

The digital value gained through AD conversion of Ch2 is stored at D2.

Basic Program #2

Ch1 is set to Current input, Ch2 is set to Voltage input, and the average converted digital

value over a set time period is stored in D10 and D14.

Basic Program 3

Ch1 is set to Current input, Ch2 is set to Voltage input, and the average converted digital

value over a set time period is stored in D30 and D34, respectively.

343

Example Application Programs

Because the 2AD does not have Offset and Gain capabilities, if values are required

outside the standard specification range, additional program commands are required to

either multiply or divide the conversion values.

When adjusting the conversion values, some of the resolution will be lost. The original

range of the analog input does not change.

Example Application Program #1

In Voltage input mode, the 2AD converts analog values from 0 ~ 10 Volts to a digital output

of 0 ~ 4000. If using a digital range of 0 ~ 10000 in the program, the 0 ~ 4000 output value

must be converted as shown in the programming example below. Digital values that are

converted from analog values are stored in D8112 or D8113.

D10 = 10 x D8112 / 4, (D8113 would be used for Ch2)

The programming code for the Equation above is given below.

344

Example Application Program #2

In Voltage input mode, the 2AD converts analog values from 0 ~ 10 Volts to a digital output

of 0 ~ 4000. If using an analog range of 0 ~ A (where 0 < A < 10) by a digital output range

of 0 ~ 4000, the range must be converted from 0 ~A‟ to 0 ~ 4000 as shown in the

programming code below.

If a digital value of 0 ~ 4000 is used in D20,

D20 = (4000) x (D8112 or D8113) / A‟

4000 / (10 volts) = A‟ / (A volts), therefore A‟ = 400 x A

D20 = 4000 x (D8112 or D8113) / 400 x A

D20=10x(D8112orD8113)/AandifA=5

D20 = 2 x (D8112 or D8113)

Example Application Program #3

If using an analog range from A ~ B by a digital range of 0 ~ 4000, the range must be

converted from A‟ ~B‟ 0 ~ 4000 in the program as shown in the example below.

345

If the digital range 0 ~ 4000 is desired in D30, please see the program below.

D30 = 4000 x (D8112 or D8113) / (B‟ -A‟)-4000xA‟ /(B‟ -A‟)

A‟ =400xA,B‟ = 400 x B so that

D30 = [4000 x (D8112 or D8113) / (400 x B - 400 x A)] - 4000 x (400 x A) / (400 x B - 400 x

A)

D30 = [10 x (D8112 or D8113) / (B - A)] - 4000 x A / (B - A)

IfA=1andB=5

D30 = [5 x (D8112 or D8113) / 2] – 1000

Example Application Program #4

If using an analog range from 4 ~ 20mA to obtain an output range from 0 to A, the normal

output range of 0 ~ 2000 be converted to the new range.

Please perform the conversion as below.

D70 = A x (D8112 or D8113) / 2000. If A = 5000 then,

D70 = 5000 x (D8112 or D8113) / 2000

D70 = 5 x (D8112 or D8113) / 2

Example Application Program #5

If using an analog range from 4 ~ 20mA to obtain an output range from A ~ B, the normal

output range of 0 ~ 2000 must be converted to the new range.

346

To convert the normal output range of 0 ~ 2000 to the range of A ~ B, please see below.

D80 = (B - A) x (D8112 or D8113) / (2000 - 0) + A; if A = 4000 and B = 20000

D80 = (20000 - 4000) x (D8112 or D8113) / (2000) + 4000

D80 = 8 x (D8112 or D8113) + 4000

Example Application Program #6

If using an analog range from A ~ B to obtain an output range from C ~ D, both the current

and the digital ranges must be converted from the standard ranges.

To convert both ranges, please see the programming example below. More details can be

found from the previous examples.

D90 = (D - C) x (D8112 or D8113) / (B‟ -A‟)+(B‟ xC-A‟ xD)/(B‟ -A‟)

D90 = (D - C) x (D8112 or D8113) / [(125 x B - 500) - (125 x A -500)] + [(125 x B - 500) x C

-(125 x A - 500) x D] / [(125 x B - 500) - (125 x A - 500)]

(A‟ = 125 x A - 500; B‟ = 125 x B - 500)

D90=(D-C)x(D8112orD8113)/[125x(B-A)]+[(B-A)xC-(A-4)xD]/(B-A)

If A = 5, B = 15, C = 5000, and D = 15000

D90 = (15000 - 5000) x (D8112 or D8113) / [125 x (15 - 5)] +

[(15 - 4) x 5000 - (5 - 4) x 15000] / (15 - 5)

D90 = 8 x (D8112 or D8113) + 4000

347

10. Points Of Technique

10.1 Advanced Programming Points

The HC family of programmable controllers has a very easy to learn, easy to use

instruction set which enables simple programs to perform complex functions. This chapter

will point out one or two useful techniques while also providing the user with valuable

reference programs

If some of these techniques are applied to user programs the user must ensure that

they will perform the task or operation that they require. BRASILTEC Electric can take no

responsibility for user programs containing any of the examples within this manual.

Each program will include a brief explanation of the system. Please note that the method

of 'how to program' and 'what parameters are available' for each instruction will not be

discussed. For this information please see the relevant, previous chapters.

10.2 Users of DC Powered Units

When using DC powered programmable controllers, it is necessary to add the following

instructions to the beginning of the installed program

Explanation:

With AC powered programmable controllers, the power break detection period can be

adjusted by writing the desired detection period to the special data register D8008.

However, in the case of DC powered units this detection period must be set to 5 msec.

This is achieved by moving the value of -5 into D8008. Failure to do this could result

in inputs being missed during the DC power 'drop'.

348

10.3 Using The Forced RUN/STOP Flags

10.3.1 A RUN/STOP push button configuration

The HC programmable controller has a single RUN terminal. When power is applied to

this terminal the PLC changes into a RUN state, i.e. the program contained is executed.

Consequently when there is no power 'on' the RUN terminal the PLC is in a STOP state.

This feature can be utilized to provide the HC PLC with an external RUN/STOP - push

button control. The following PLC wiring and program addition are required.

Explanation:

Pressing the RUN push button sets the PLC into the RUN state. This means M8000 is

ON.

Following the program, M8000 activates both M8035 and M8036. These two special

auxiliary devices set the PLC in to forced RUN mode. Releasing the RUN push button

would normally return the PLC to the STOP state, but because the two auxiliary coils,

M8035 and 36 are ON, the PLC remains in RUN. To stop the, PLC pressing the STOP

push button drives an input ON

and consequently M8037 turns ON. This then automatically forces OFF both M8035 and

36 and resets itself. Hence, the PLC is in its STOP status and awaits the cycle to begin

again.

Input priority:

• The STOP input is only processed after the programs END statement has been reached

-this is because the physical input used, i.e. an X device is normally updated and

processed at that time. Therefor, the RUN input is given priority when both RUN and

STOP inputs are given simultaneously.

• To give priority to the STOP input and provide a 'safer' system, some form of

mechanical/ circuitry interlock should be constructed between both RUN and STOP inputs.

A very simple example is shown in the wiring diagram above.

• For push-button control to operate correctly, the user must set the RUN/STOP

349

switch on units to the STOP position.

• units do not have a RUN terminal. One of the inputs X0 to X17 (X0 to X7 for -16M)

on the MPU should be configured as a RUN terminal in the parameter settings.

10.3.2 Remote RUN/STOP control

The HC family of programmable controllers can be controlled, i.e. switched into RUN or

STOP modes and have devices monitored by use of intelligent external control devices.

These includes such items as computers, the BRASILTEC data access units and Graphic

Operator Terminals.

The following example utilizes a graphic unit:

Explanation:

The programmable controller needs no

special wiring or additional programming for

this example.

The only condition required is that the PLC

would not normally be in a RUN state, i.e.,

there is no connection to the RUN terminal

and the RUN/STOP switch on PLC‟s that have one is set in the STOP position.

The HMI should be programmed with 'SWITCH' devices

driving the three special M codes M8035,36 and 37. By

activating the 'SWITCH' devices for M8035 and M8036 the

PLC can be switched into a RUN state, while driving the

'SWITCH' device M8037 will put the PLC into a STOP state.

Example 'SWITCH' device setting opposite.

Use an 'Alternate' switch for M8035 and M8036 and use a 'Momentary' switch for M8037.

(see DU operation manual for SWITCH operation and programming)

Note: While M8035 and M8036 are ON the MPU can not be changed to STOP

mode using the RUN terminal or RUN/STOP switch. Either set M8037 ON, or reset M8035

and M8036, to return to the normal operating state.

HCA2, Remote STOP

With HCA2, units, even if the RUN terminal or RUN/STOP switch is in the RUN position,

it is still possible to do a remote STOP by forcing M8037 ON. Return to RUN by resetting

M8037.

10.4 Constant Scan Mode

Some times the timing of operations can be a problem, especially if some co-ordination is

being attempted with a second control system. In cases like this it is very useful to fix the

PLC‟s scan time. Under normal conditions the PLC‟sscantimewillvaryfromonescantothe

350

next. This is simply because the natural PLC scan time is dependent on the number of

and type of the active instructions. As these are continually changing between program

scans the actual scan time is also a varying. Hence, by using the additional program

function identified below, the PLC‟s scan time can be fixed so that it will be the same

duration on every program scan. The actual scan duration is set by writing a scan time in

excess of the current longest

scan duration to special data register D8039 (in the example the value K150 is used). If

the PLC scans the program quicker than the set scan time, a 'pause' will occur until the set

scan duration is reached.

This program example should be placed at the beginning of a users program.

10.5 Alternating ON/OFF States

It is often useful to have a single input control or toggle a situation. A basic, yet typical

example is the switching ON/OFF of a Light. This can be easily achieved by using

standard ladder program to load an input and switch an output. However, this system

requires an input which is latchable. If basic ladder steps are used to latch the program

then it soon becomes complex

and prone to mis-programming by the user. Using the ALT instruction to toggle the

ON/OFF (SET/RESET, START/STOP, SLOW/FAST) state is much simpler, quicker and

more efficient.

Explanation:

Pressing the momentary push button X1 once will switch the lamp ON. Pressing the push

button for a second time will cause the lamp to turn OFF. And if the push button is again

pressed for a third time, the lamp is turned ON again and so the toggled status continues.

The second program shown identifies a possible motor interlock/control, possibly a

start/stop situation.

351

10.6 Using Battery Backed Devices

For Maximum Advantage Battery backed devices retain their status during a PLC power

down. These devices can be

used for maximum advantage by allowing the PLC to continue from its last operation

status just before the power failure.

For example: A table traverse system is operating, moving alternatively between two limit

switches. If a PLC power failure occurs during the traversing the machine will stop. Ideally,

once the PLC regains its power the system should continue from where it left off, i.e. if the

movement direction was to the left before the power down, it should continue to the left

after the restoration of the power.

Explanation

The status of the latched devices (in this example M coils M600 and M601) is retained

during the power down. Once the power is restored the battery backed M coils latch

themselves in again, i.e. the load M600 is used to drive M600

10.7 Indexing Through Multiple Display Data Values

Many users unwarily fall in to the trap of only using a single seven segment display to

display only a single data value. This very simple combination of applied instructions

shows how a user can 'page' through multiple data values displaying each in turn.

Explanation:

The contents of 10 counters are displayed in a sequential, 'paged' operation.

The paging action occurs every time the input X11 is

received. What actually happens is that the index register Z is continually incremented

until it equals 9. When this happens the comparison instruction drives M1 ON which in

turn resets the current value of Z to 0 (zero). Hence, a loop effect is created with Z varying

between fixed values of 0 and 9 (10 values). The Z value is used to select the next counter

to be displayed on the seven segment display.

This is because the Z index modifier is used to offset the counter being read by the BCD

output instruction.

352

10.8 Reading And Manipulating Thumbwheel Data

Data can be easily read into a programmable controller through the use of the BIN

instruction. When data is read from multiple sources the data is often stored at different

locations. It may be required that certain data values are combined or mixed to produce a

new value. Alternatively, a certain data digit may need to be parsed from a larger data

word. This kind of data handling and manipulation can be carried out by using the SMOV

instruction. The example below shows how two data values (a single digit and a double

digit number) are combined to make a final data value.

Explanation:

The two BIN instructions each read in one of the data values. The first value, the single

digit stored in D1, is combined with the second data value D2 (currently containing 2

digits). This is performed by the SMOV instruction. The result is that the contents of D1 is

written to the third digit of the contents of D2. The result is then stored back into register

D2.

10.9 Measuring a High Speed Pulse Input

10.9.1 A 1 msec timer pulse measurement

353

Some times due to system requirements or

even as a result of maintenance activities it is

necessary to 'find out' how long certain input

pulses are lasting for. The following program

utilizes two interrupt routines to capture a pulse

width and measure it with a 1 msec timer. The

timer used in the example is one of the timers.

However, T63 on the HCA2 would be used for

a similar situation on that PLC.

Explanation:

The 1 msec timer T246 is driven when interrupt

I001 is activated. When the input to X1 is

removed the current value of the timer T246 is

moved to data register D0 by interrupt program

I100. The operation complete flag M0 is then set ON.

Note: X10 acts as an enable/disable flag.

10.9.2 A 0.1 msec timer pulse measurement

This is a very accurate measuring process for

pulse inputs. The use of a standard timer is not

accurate enough in this case as the highest

resolution is 1msec. Therefor, this example

shows how the special high accuracy devices

M8099 and D8099 are used to capture the 0.1

msec resolution pulse data.

Explanation:

The incoming pulse is captured between two

interrupt routines. These routines operate

independently of each other, one on the rising

edge of the pulse input and one on the falling

edge of the same input. During the pulse input

the contents of

special register D8099 are continually moved into data register D0. Once the pulse has

completed the contents of D0 can be viewed at leisure.

Please note for this high speed/accuracy mode to be active for D8099, the corresponding

special auxiliary bit device M8099 must be driven ON in the main program.

354

10.10 Using The Execution Complete Flag,

M8029

Some of the applied instructions take more than one

program scan to complete their operation.

This makes identification of the current operating state

difficult. As an aid to the programmer,

certainappliedinstructionsidentify

theircompletionbysettinganoperationcompleteflag,

M8029.

Because this flag can be used by several different

instructions at the same time, a method similar to the following should be used to trap the

M8029 status at each of the instructions using it:

Explanation:

The M8029 'trapping‟ sequence takes advantage of the batch refresh of the HC family of

PLC‟s. As the program scan passes each instruction using M8029 the status of M8029

changes to reflect the current status of the instruction. Hence, by immediately resetting (or

setting) the drive flag for the instruction the current operational status of the instruction is

trapped. So when the batch refresh takes place only the completed instructions are reset.

The example above uses a pulse to set the drive flags so that it is easy to monitor and see

when each instruction finishes (if the instructions are continuously driven it will be difficult

to see when they finish!).

10.11 Creating a User Defined MTR

Instruction

For users who want to have the benefits of

the MTR instruction for BRASILTEC users

who want to specify more than one MTR

area, this user defined MTR function will be

very useful.

Explanation:

The main control of this program rests in the

timer interrupt I620. This interrupt triggers

every 20msec regardless of what the main

program is doing. On each interruption one

bank of the user defined matrix is read. The

355

program simply consists of

reading the inputs triggered by each of the multiplexed outputs.

Thereaddataisthenstoredinsequentialsetsof auxiliary registers. Each MOV instruction

reads a new bank of multiplexed inputs.

The equivalent MTR instruction is shown immediately before the 'user defined' MTR.

10.12 An Example System

Application Using STL And IST Program Control

The following illustration shows a simple 'pick and place' system utilizing a small robotic

arm. The zero point has been de-fined as the uppermost and left most position accessible

by the robot arm.

A normal sequence of events

A product is carried from point 'A' to point 'B' by the robot arm. To achieve this operation

the following sequence of events takes place:

Initial position: the robot arm is at its zero point.

1) The Robots grip is lowered to it lowest limit

- output Y0: ON, input X1: ON, output Y0: OFF.

2) The grip clamped around the product at point A

- output Y1: ON.

3) The grip, now holding the product, is raised to its

upper limit

- output Y2: ON, input X2: ON, output Y2: OFF.

4) The robot arm traverses to its right most position

- output Y3: ON, input X3: ON, output Y3: OFF.

5) The grip and product are lowered to the bottom limit

- output Y0: ON, input X1: ON, output Y0: OFF.

6) The grip is unclamped and the product is released at point B

- output Y1: OFF.

7) The grip is retrieved back to its upper limit

- output Y0: ON, input X2: ON, output Y0: OFF.

8) The arm traverses back to its zero point by moving to the left most limit

- output Y4: ON, input X4: ON, output Y4: OFF.

The cycle can then start again.

System parameters

356

1) Double solenoid valves are used to control the up

(Y2)/down (Y0) and right (Y3)/left (Y4) motion.

2) A single solenoid valve is used for the clamp

(Y1)/unclamp operation.

This example uses the IST instruction (FNC 60)

to control the operation mode of the robot arm.

The program shown opposite identifies how the

IST instruction is written into the main program.

WhentheISTinstructionisusedthereare5 selectable modes

which access three separate programs. This example has

the following programs associated with its modes. Each

mode is selected. The screen shown opposite is the initial

mode menu. Each of the menu options causes a screen

jump to the selectedmode.Menuoptions1and3alsosetON

auxiliary devices M30 and M31 respectively.

The active bits then trigger a screen change to the selected mode. Please note

'Automatic' has three further modes which are selected from a following screen/display.

357

Manual Mode:

In this mode ALL operations of the robot arm

are controlled by the operator. An operation or

movement is selected by pressing the

corresponding option on the DUs screen (see

below). These options then trigger DU

SWITCH objects which drive associated

auxiliary relays within the programmable

controller. The SWITCH objects should be set

to momentary so that they

only operate when the key is pressed.

The status of the clamping action could be identified by two INDICATOR (SCR) functions

on the DU unit. They could be monitoring the ON and OFF status of the clamp output Y1.

Hence, when the clamp was ON a single black box opposite the ON button could appear.

When the clamp is OFF the box would appear in front of the OFF button. At any one time

only one box would be active.

Key assignment for DU screen opposite:

Up = M15 Down = M20

Left = M16 Right = M21

Clamp ON = M22

Clamp OFF = M17

Menu = reset M30

Once manual operation is completed the operator can return to the main mode selection

screen by touching the 'Menu' key. This causes the manual mode bit flag, M30, to be reset.

Once M30 is reset the DU screen then changes back to the desired mode selection

screen.

Zero Return Mode

This mode fulfills an initialization

function by returning the robot arm to

a known position.

Once 'Z Return' has been selected

from the mode selection screen the

bit device M35 is ON. At this point the

DU screen changes to the 'zero

return' screen. The actual zero return

operation will then start when the

'Return' push button is pressed

358

(activating M25) and the robots grip is not active, i.e. Y1 is OFF (on the STL flow diagram

opposite Y1 OFF is shown as Y1*).

The DU unit could be used to report back the status

of the current returning operation. The example

screen shown opposite uses 3 variable messages

to indicate this status. The messages could be text

strings stored in the PLC which are read and

displayed by the DUs ASCII option.

Once the zero point has been returned to, the

operator would also return to the mode selection

screen. This is achieved by pressing the 'Menu'

touch key. This then resets the zero return bit device M31 which allows the DU screen

change to take place.

Key assignment for DU screen above:

Return = M25

Menu = reset M31

Automatic Mode

Under this option there are three further mode selections. The available modes are:

Step Mode:

- The automatic program is stepped through - operation by operation, on command by the

user pressing the 'Start' button.

Cycle Mode:

- The automatic program is processed for one complete operational cycle. Each cycle is

initiated by pressing the 'Start' button. If the 'Stop' button is pressed, the program is

stopped immediately. To resume the cycle, the 'Start' button is pressed again.

Automatic Mode:

- A fully automatic, continuously cycling mode. The modes operation can be stopped by

pressing the 'stop' button. However, this will only take effect after completion of the current

cycle.

In this example these three modes are selected by an external rotary switch. The rotary

switch is not connected to the PLC but to the I/O

bus on the rear of the DU unit. The use of the

rotary switch means that the selected modes are

mutually exclusive in their operation. For an

operator friendly environment the currently

selected mode is displayed on the DU screen

(again this could be by use of the DUs ASCII

function). The start/ stop controls are touch keys

on the DU screen. When a mode is selected the

input received at the DU unit momentarily activates one of the following auxiliary relays:

Rotary switch:

359

position 1 'Step' - Step operation: DU input I0, controls bit device M32 position 2 'Cycle'

-Single cycle operation:

DU input I1, controls bit device M33 position 3

'Auto' - Automatic operation: DU input I2, controls bit device M34

Key assignment for DU screen above:

Start = M36

Stop = M37

The program run in all three mode choices is shown opposite. As noted earlier, the 'Step'

mode will require an operator to press the 'Start' key to start each new STL block. This

could be viewed as an additional transfer condition between each state. However, the

user is not required to program this as the IST instruction controls this operation

automatically.

The 'Cycle' mode will process the program from STL

step S2, all the way through until

STLstepS2isencounteredagain.Once

more the IST instruction ensures that only one cycle is

completed for each initial activation of the 'Start' input.

Finally as suggested by the name, 'Auto' mode will

continuously cycle through the program until the 'Stop'

button is pressed.

The actual halting of the program cycling will occur

when the currently active cycle is completed.

Points of interest:

a) Users of the IST instruction will be aware that only one of the operation modes should

be active at one time. In this example program the isolation of 'Manual' and 'Zero return'

modes by the use of separate DU control screens, and the use of a rotary switch to isolate

the three automatic modes achieves this objective. Alternatively all of the operation modes

could be selected by a rotary switch.

b) For users who would like to test this example using simulator switches (i.e., without

using a data access unit) the appropriate program changes are noted next to the full

program listing later in this section. Alternatively, the original program could be used with

all of the input conditions being given by forcing ON the contacts with a programming

device e.g. a hand held programmer, Medoc etc.

360

c) Special flags used in this program are:

• M8040: State transfer inhibit

- Manual mode: Always ON.

Zero return and Cycle modes: Once the 'Stop' input is given the current state is retained

until the 'Start' input is received.

Step mode: This flag is OFF when the 'Start' input is ON. At all other times M8040 is ON,

this enables the single STL step operation to be achieved.

Auto mode: M8040 is ON initially when the PLC is switched into RUN. It is reset when the

'Start' input is given.

• M8041: State transfer start

- Manual and Zero return modes: This flag is not used.

Step and Cycle modes: This flag is only active while the 'Start' input is received.

Auto mode: The flag is set ON after the 'Start' input is received. It is reset after the 'Stop'

input is received.

• M8042: Start pulse

- This is momentarily active after the 'Start' input is received.

• M8043: Zero return complete

- This is a user activated device which should be controlled within the users program.

• M8044: At Zero position/ condition

- This is a user activated device which should be controlled within the users program.

Full program listing:

361

Program options:

10.13 Using The PWM Instruction For Motor Control

The PWM instruction may be used directly with an inverter to drive a motor. If this

configuration is used the following ripple circuit will be required between the PLC‟s PWM

output and the inverters input terminals.

362

Key to component values:

R1 - 510Ω(1/2 W) R2 - 3.3kΩ(1/2 W)

R3 to R8 - 1kΩ(1/4 W) R9 - 22Ω(1/4 W)

R10 - variable dependent on configuration. In this example 1kΩ(1 W)

C1 - 470µF

Note: the values of R10 and C1 are dependent on the system configuration

Establishing system parameters and values

It is assumed that the input impedance of the inverter is of a high order. Having

established this, the values of C1 and R10 are calculated to giveτa time result (in msec)

approximately 10 times bigger than the value used for T0in the PWM instruction:

τ=R10(kΩ)ÅLC1(µF)

During this calculation the value of R10 must be vastly greater than the value of R9. In the

example, R9 is equal to 22Ω, where as R10 is equal to 1kΩ. This proportion is

approximately 1:50 in favor of R10.

The maximum output voltage (to the inverter) including ripple voltage, can be found by

using the following equation:

363

Where:

em= Maximum output voltage

E= pulse (square wave) output voltage (see circuit on the previous page)

t = PWM pulse duration (see previous page for reference)

T0= PWM cycle time for pulse (see previous page for reference)

The average output voltage (to the inverter) including ripple voltage, can be found by

using the following equation:

Where:

∆e= the voltage value of the ripple

e = ripple output voltage

T0= PWM cycle time for pulse

t = PWM pulse duration

τ = ripple circuit delay

See previous page for references.

Operation

Once the system configuration has been selected and the ripple circuit has been built to

suit, the motor speed may be varied by adjusting the value of 't' in the PWM instruction.

The larger the value of 't' the faster the motor speed will rotate. However, this should be

balanced with the knowledge that the faster the output signal changes the greater the

ripple voltage will be. On the other hand a slowly changing output signal will have a more

controlled, yet smaller ripple effect. The speed of the signal change is determined by the

size of C1. A large capacitive value for C1 would give a smaller ripple effect as charge is

stored and released over a longer time period.

Circuit configuration for a PLC with sink outputs.

The component values are the same as stated previously

The following characteristics were noticed when the identified circuit was tested

The PWM instruction had T0 set to K50. The value for t was varied and also the load

impedance was varied to provide the following characteristics graph (see over page).

364

The duration of the T0, time base also affects the ripple voltage. This can be clearly seen

in the next set of test data:

The behavior of the Sink switched circuit detailed above will be similar to that of the

Source switched circuit detailed earlier.

10.14 Communication Format

10.14.1 Specification of the communication parameters:

Items such as baud rates, stop bits and parities must be identically set between the two

communicating devices. The communication parameters are selected by a bit pattern

which is stored in data register D8120.

365

General note regarding the use of Data register D8120: This data register is a

general set-up register for all ADP type communications. Bits 13 to 15 in the 232ADP units

should not be used. When using the network with 485ADP units bits 13 to 15 should be

used instead of bits 8 to 12.

10.14.2 Header and Terminator Characters

The header and terminator characters can be changed by the user to suit their

requirements.

The default setting for the header stored in D8124 is 'STX' (or 02H)and the terminator

default setting stored in D8125 is 'ETX' (or 03H). The header and terminator characters

are automatically added to the 'send' message at the time of transmission. During a

receive cycle, data will be ignored until the header is received. Data will be continually

read until either the termination character is received or the receive buffer is filled. If the

buffer is filled before the termination character is received then the message is considered

incomplete.

If no termination character is used, then reading will continue until the receive data buffer

is full. Only at this point will a message have been accepted and complete. There is no

366

further buffering of any communications, hence if more data is sent than the available

destination buffer size then the excess will be lost once the buffer is full.

It is therefore very important to specify the receive buffer length the same size as the

longest message to be received.

Events to complete a transmission:

The RS instruction should be set up and

active.

The data to be transmitted should be moved

into the transmission data buffer. If a variable

is being used to identify the message length

in the RS instruction this should be set to the

new message length. The send flag M8122

should then be SET ON. This will automatically reset once the message has been sent.

Please see the example program right.

Events encountered when receiving a message:

The RS instruction should be set up and active. Once data is being received and an

attempt is made to send out data, the special M flag M8121 is set ON to indicate the

transmission will be delayed. Once the 'incoming'

message is completely received the message

received flag M8123 is set ON. At the same time if

M8121 was ON it is automatically reset allowing

further messages (delayed or otherwise) to be

transmitted.

It is advisable to move the received data out of the received data buffer as soon as

possible. Once this is complete M8123 should be reset by the user. This is then ready to

send a message or to await receipt of a new message.

10.14.3 Timing diagrams for communications:

1) No Handshaking D8120 (b12, b11, b10) = (0, 0, 0)

☆� below version 2.00

367

2) Terminal mode D8120 (b12, b11, b10) = (0, 0, 1)

a) Send Only

b) receive only

3) Normal Mode 1 D8120 (b12, b11, b10) = (0, 1, 1)

�☆ below V2.00.

368

4) Normal Mode 2 D8120 (b12, b11, b10) = (1, 0, 1)

�☆ after V2.00

 (V2.00 or above) Communications

In the V2.00 or above, full duplex communication is performed.

1) No Hardware Handshaking D8120 (B12, b11, b10) = (0,0,0)

369

2) Terminal Mode

The control line and transmission sequence are identical to those in the HC, on page

3) Normal Mode 1 D8120 (b12, b11, b10) = (0, 1, 1)

4) Interlink Mode D8120 (b12, b11, b10) = (0, 1, 0)

370

10.14.4 8 bit or 16 bit communications.

This is toggled using the Auxiliary relay M8161. When this relay is OFF 16 bit

communications takes place. This actually means that both bytes of a 16 bit data device

are used in both the transmission and the receipt of messages. If the M8161 device is

activated then 8 bit mode is selected. In this mode only the lower 8 bits (or byte) is used to

perform the transmissionreceiving actions. The toggling of the M8161 device should only

occur when the RS instruction is not active, i.e. it is OFF.

When a buffer area is specified in the RS instruction it is important to check whether 8 or

16bit mode has been selected, i.e. a buffer area specified as D50 K3 would produce the

following results.......

General note regarding hardware: Information regarding pin outs of the respective

ADP special function blocks can be found along with wiring details in the appropriate

hardware manuals.

10.15 PID Programming Techniques

10.15.1 Keeping MV within a set range

In the reserved registers of the PID data block S 3+18 and S3+19 form a double word

device that contains the previous MV x K100. The following program uses this to keep MV

under control when it exceeds the operating limits.

Example Program to keep MV in the range K100 to K5000

371

If data registers are used to hold the limit values, it is possible to use a MUL instruction

instead of the DMOV. E.g. When D50 is upper limit use: MUL D50 K100 D38 because the

result of MUL is already a double word DMUL is not needed.

Resetting (S3+19, S3 +18) in this way prevents runaway, which occurs if only MV is

changed.

10.15.2 Manual/Automatic change over

In order to switch from automatic (PID) control to manual control and back to automatic it

is necessary for the PID process to perform 'Manual Tracking'. Although the HC PID

instruction does not have a manual tracking feature there are two methods that can be

used to make the switch from manual back to automatic as trouble free as possible.

To understand the reason for the two methods the following should be noted. The PID

instruction sets its initial output value based on the initial value of the output register.

When the PID instruction is switched on it can only do P as it has only 1 data reading. On

the first reading the current value of the output register is used as ∆MV. Thereafter the

previous output value is used (stored in S3+18, S3 +19).

After the next reading PI can be calculated and from the third reading full PID is

performed.

Please see section 5.98, PID (FNC 88), for the complete equations.

Method

It is recommended that if manual to auto switching is desired that the PID instruction is

switched off during manual operation and the operator controls the value of the MV

register (the Output Value). When returning to auto mode, the PID instruction is switched

on again and uses the last MV input by the operator during the first PID calculation. After 3

readings full PID will be operating and the process should be under control quickly.

(Assuming that manual control did not cause a move too far from the Set Point.

10.15.3 Using the PID alarm signals

Included as part of the data block there are four alarm values. These set the maximum

positive and negative change that should occur to MV and PV. The PID alarm signals are

used to warn of the system going out of control.

When the system is starting from cold it is usually not good to include the Derivative

numbers of the in the calculation; the changes to PV are large and the Derivative

introduces too much correction. Also, if the system starts to move rapidly away from the

SV then sometimes the use of D can over correct and cause chasing.

By having an 'alarm' flag for the change in PV and MV it is possible to monitor the state of

the system and adjust the PID parameters to appropriate settings.

When the system is close to the SP the changes in PV (and MV) should be minimal. In

this situation using full PID is very useful in keeping the system close to the SP. (Full PID

372

is appropriate).

However, if the conditions change (e.g. opening a refrigerator door, adding ingredients to

a mixture, cold start, etc.) the system reacts. In some cases (especially cold start) the

reaction is too much for the D to be useful (PI or sometimes just P only is better). In these

cases the alarm flags can be used to change to PI control until the system returns to a

more stable condition,

when full PID can then be used.

Basically, rather than use actual values of the PV to determine the change over point from

PI to PID (or PID to PI), use the size of the change in PV (or MV). This means changes to

the Set

Point do not require different ranges for the PI - PID change over point (at least, in theory).

10.15.4 Other tips for PID programming

• It is recommended that an input value for PV is read before the PID is activated.

Otherwise, the PID will see a big change from 0 to the first value and calculate as if a big

error is occurring.

• The PID instruction is not interrupt processed. It is scan dependent and as such the

sampling can not occur faster the HC scan time. It is recommended that TSis set to a

multiple of the program scan time.

• To keep timing errors to a minimum it is recommended that constant scan is used.

• To improve sampling rates it is possible to put the PID instruction inside a timer interrupt

routine.

• It is better to have the PID only perform P until the input value (PV) reaches the working

range.

• When setting up it is a good idea to monitor the input and output of the PID instruction

and check that they are about the expected values.

• If the PID system is not operating properly check the error flags for PID errors (D8067).

10.16 Additional PID functions

The following parameter table gives the additional parameters available with (C)MPUs.

These are:

-S3+1 bit 4: Pre-tuning operation flag.

-S3+1 bit 5: Output Value range limit flag.

-S3+22: Output Value upper limit.

-S3+23: Output Value lower limit.

373

Note: S3+1 b2 and b5 should not be active at the same time. Only one value each is

entered into the data registers S3+22 and S3+23.

10.16.1 Output Value range control (S3 +1 b5)

Bit5ofparameterS3+1, when ON, activates S3+22 and S3+23 to be upper and lower limits

for the output value (MV).

This feature restricts the output value to the specified limits; in effect, this automatically

performs the same operation as that described in section 10.15.1.

10.17 Pre-tuning operation

10.17.1 Variable Constants

The Pre-tuning operation can be used to automatically set values for the following

variables:

- The direction of the process; Forward or Reverse (S 3+1, bit 0)

- The proportional gain constant; KP(S3+3)

- The integral time constant; TI(S3+4)

- The derivative time constant; TD(S3+6)

Setting bit 4 of S3+1 starts the pre-tuning process. Before starting, set all values that are

374

not set by the pre-tuning operation: the sample time, Ts (S3 +0); the input filterα(S 3+2);

the Derivative gain, KD(S 3+5); the Set Point, SV (S1); and any alarm or limit values, (S 3

+20-23).

The Pre-tuning operation measures how fast the system will correct itself when in error.

Because the P, I, and D equations all react with differing speed, the initial error must be

large so that effective calculations can be made for each type of equation. The difference

in values between SP and PVnf must be a minimum of 150 for the Pre-tuning to operate

effectively. If this

is not the case, then please change SV to a suitable value for the purpose of pre-tuning.

The system keeps the output value (MV) at the initial value, monitoring the process value

until it reaches one third of the way to the Set Point. At this point the pre-tuning flag (bit 4)

is reset and normal PID operation resumes. SV can be returned to the normal setting

without turning the PID command Off.

During the course of normal operation, the Pre-tuning will NOT automatically set new

values if the SV is changed. The PID command must be turned Off, and the Pre-Tuning

function restarted if it is necessary to use the Pre-tune function to calculate new values.

• Caution: The Pre-tuning can be used as many times as necessary. Because the flag

resets, the set bit can be turned On again and new values will be calculated. If the system

is running an oven heater and the SV is reduced from 250 to 200 C, the temperature must

drop below 200 or the“Forward/Reverse”flag will be set in the wrong direction. In addition,

the system error value must be large for the pre-tune variable calculations to work

correctly.

• Note: Set the sampling time to greater than 1 second (1000 ms) during the

pre-tuning operation. It is recommended that the sampling time is generally set to a value

much greater than the program scan time.

• Note: The system should be in a stable condition before starting the pre-tuning

operation.

An unstable system can cause the Pre-tuning operation to produce invalid results. (e.g.

opening a refrigerator door, adding ingredients to a mixture, cold start, etc.)

• Note: Even though Pre-tuning can set the above mentioned variables, additional logic

may be needed in the program to "scale" all operating values to those capable of being

processed by the special function devices being used.

10.18 Example Autotuning Program

The following programming code is an example of how to set up the Pre-Tuning function.

375

10.19.1 Outline of functions.

Symbols in the 5DM refer to;

X: Input, Y: Output, M: Auxillary relay, S: State, T: Timer, C: Counter, D: Data register.

Operator functions: The following functions can be used only from the operation keys on

the front of the 5DM. (Refer to the 5DM Hardware manual for the correct procedure when

using the operation keys).

376

5DM Control functions: The following functions can be used only when controlled by the

sequence programs.

If a key word to prohibit read or write is registered in the PLC, only the clock time

display is available. All other functions shown above are not. If an operation is performed

in this state, the display flickers for 5 seconds.

10.19.2 Control devices for 5DM

When using the 5DM control functions, write the head device number of Data registers (D)

and Auxiliary relays (M), to the special data registers D8158 and D8159 respectively.

D8158 and 8159 are the control devices for the 5DM.

Five data registers and 15 auxiliary relays are available for the control of a 5DM.

377

If a nagative value or a value outside the D or M device ranges in the /HCA2 is written to

D8158 or D8159, the 5DM control functions are disabled. (The initial value of D8158 and

D8159 is„-1‟ so that the functions are disabled).

10.19.3 Display screen protect function

By writing a specific numeric value to„D☆�+3‟ (5DM control device), operator functions

with regard to display and setting can be restricted.

10.19.4 Specified device monitor

It is possible to specify in the PLC, the devices to be displayed on the 5DM. When

specifying a device to be displayed, write the correcponding number shown in the table

below to D☆.

378

*1 If a numeric value other than 1~9 is writen, no device will be specified. In this case all

operator functions are valid.

Points to note:

a)During the monitoring of devices T or C, if a device number not used in the program is

specified, the next largest existing device number is displayed. If the specified device

number is beyond the range available, the largest existing device number will be

displayed.

If the OUT instruction for the T or C is not present in the sequence program,„----‟ is

displayed on the 5DM screen.

b)When scrolling and displaying consecutive devices using the operation keys, move up

and down the range with the [+] and [-] keys.

c)If the device numbers are not consecutive, and scrolling is required, some additional

PLC code will be needed. The range of device numbers to be displayed will have to be

related to an index register, the [+] and [-] keys increment and decrement the current value

of this register, and therefore change the displayed values.

d)If data registers used in D8158 are located in the non-backup area, the current values of

the data registers are reset to„0‟ when the PLC is stopped. As a result of this, the device

type to be displayed, set byD�becomes invalid and, the operator functions become valid.

In order to disable the operator functions, use data registers located in a battery backed

area.

10.19.5 Specified device edit

This function allows the operator to edit the devices displayed by the specified device

monitor.

The following devices are used to achieve this.

379

Points to note;

a)In order to edit a device while it is being displayed, the control device M□

�shouldbeON.

If the edit request turns OFF, the function is disabled. In order to prevent this, it is

recommended to drive M□�using a set command.

b)When the edit request is turned ON, bit devices Y, M and S can be set or reset. Also the

current and set values of word devices D, T and C can be edited.

• Bit devices - A cursor under the device flickers, pressing [OK] sets or resets the device.

The [ESC] key signifies the end of the change process, M□�+1 set OFF and M□�is

reset.

• Word devices - The current value flickers, pressing the [+] or [-] keys will increment or

decrement the current value.

Pressing the [OK] key before the [+] or [-] keys in the case of T or C, allows the set values

to be changed.

Pressing the [OK] key after a value change, completes the change. Pressing the [ESC]

key cancels the change and completes the process, for either keyM□�+1is set to OFF

and M□�is reset.

c)If the [+] and [-] keys are used for device scrolling, when the current or set value

is increased or decreased for editing purposes, the program for timer scroll will be

actuated. For this combination of functions please set an interlock in the sequencer

program.

10.19.6 Automatic Backlight OFF

Using this function a set time until the backlight is switched OFF can be set, or it can be

forced ON and OFF when necessary.

D☆�+2 can be set in the following range;

0 (initial value) : 10 minutes

1 to 240 : 1 to 240 minutes

240 or more : 240 minutes

Negative value : Forced OFF

Points to note;

380

a)Once the backlight turns OFF, it will turn ON again when any key is pressed. This key

will act as a trigger, not an effective key. The contents displayed before the backlight OFF,

will them be shown.

b)Setting a Negative value in D☆�+2 will force the backlight OFF, setting M□+2 the

backlight can be forced ON.

10.19.7 Error display enable / disable

Users can specify the types of errors in the PLC to be displayed on the 5DM unit.

The following errors are unconditionally displayed when they occur; PLC Hardware,

parameter, grammatical and circuit errors.

While M□+3 is ON, the following errors are also displayed;

I/O configuration, parallel link and operation errors.

When any key is pressed, or when the error status is released the error display

dissappears.

If two or more errors have occured, the priority is given to errors to be unconditionally

displayed. Additionally the error with the smallest„error number‟ has overall priority.

